DOI QR코드

DOI QR Code

Performance Evaluation of ABR and ASBR for Anaerobic Methane Fermentation

ABR과 ASBR 형태에 따른 혐기성 메탄 발효 운전 성능 평가

  • Lee, Chae-Young (Department of Civil Engineering, The University of Suwon) ;
  • Lee, Se-Wook (Department of Civil Engineering, The University of Suwon)
  • 이채영 (수원대학교 토목공학과) ;
  • 이세욱 (수원대학교 토목공학과)
  • Received : 2011.06.08
  • Accepted : 2011.06.24
  • Published : 2011.06.30

Abstract

This study was conducted to evaluate the performance of methane fermentation from effluent of hydrogen fermentation reactor in anaerobic baffled reactor (ABR) and anaerobic sequencing batch reactor (ASBR). Two reactors were operated at organic loading rate of $1.0kg\;COD/m^3{\cdot}d$ and hydraulic retention time (HRT) of 20 day. Methane production rates of ABR and ASBR for start-up periods were 0.04 L/L/d and 0.19 L/L/d, respectively, whereas maximum methane production rates of ABR and ASBR were 0.25 L/L/d and 0.31 L/L/d, respectively. Removal rates of chemical oxygen demand (COD) in ABR and ASBR for start-up periods were 89% and 92%, respectively. After startup periods, removal rates of COD and volatile solids (VS) in ABR and ASBR were maintained over 90%. The specific methanogenic activity (SMA) increased as microorganism acclimated to the substrate.

본 연구는 혐기성 수소 발효 반응조의 유출수를 기질로 이용하여 anaerobic baffled reactor (ABR) 및 anaerobic sequencing batch reactor (ASBR) 형태에 따른 혐기성 메탄 발효 성능을 평가하였다. 두 개의 반응조는 유기물 부하율 $1.0kg\;COD/m^3{\cdot}d$와 수리학적 체류시간 20일에서 운전을 수행하였다. ABR과 ASBR의 초기 운전 기간에서 메탄 발생량은 각각 0.04 L/L/d와 0.19 L/L/d로 나타났으며, ABR과 ASBR의 최대 메탄 발생량은 각각 0.25 L/L/d와 0.31 L/L/d로 나타났다. ABR과 ASBR의 초기 운전 기간에서 COD 제거율은 각각 89%와 92%로 나타났다. 정상 상태에 도달한 후에는 ABR과 ASBR의 COD 및 VS의 제거율은 각각 90% 이상 유지되었다. 비메탄 활성도는 미생물이 기질에 적응함에 따라 반응조에 상관없이 증가하였다.

Keywords

References

  1. 천석현, 국내 신재생에너지정책 추진현황과 향후 전망, 설비저널, 39(1) (2010).
  2. 배재호, 유만식, 류돈식, 이종규, 김창균, 폐기물 자원화, 1판, 동화기술, pp. 69-70 (2010).
  3. Barber, W. P. and Stuckey, D. C., "The use of the anaerobic baffled reactor(ABR) for wastewater treatment: A revies", Wat. Res., 33(7), pp. 1559-1578 (1999). https://doi.org/10.1016/S0043-1354(98)00371-6
  4. Boopathy R. and Sievers D. M., "Performance of a modified anaerobic baffled reactor to treat swine waste", Trans. ASAE, 34(6), 2573-2578 (1991). https://doi.org/10.13031/2013.31908
  5. Barber, W. P. and Stuckey, D. C., "Startup strategies for anaerobic baffled reactors treating a synthetic sucrose feed", Proceedings of the 8th International Conference on Anaerobic Digestion, 2, pp. 32-39 (1997).
  6. Ji, G. D., Sun, J. R. and Tong, J. J., "Anaerobic baffled reactor (ABR) for treating heavy oil produced water with high concentrations of salt and poor nutrient", Bioresource Technology, 100(3), pp. 1108-1114 (2009). https://doi.org/10.1016/j.biortech.2008.08.015
  7. Samir, K. K., Anaerobic Biotechnology for Bioenergy Production, Wiley-Blackwell, pp. 2-3 (2008).
  8. Ho, C. C. and Tan, Y. K., "Anaerobic treatment of palm oil mill effluent by tank digesters", J. Chem. Technol. Biotechnol, 35b, pp. 155-164 (1985).
  9. Shelton, D. R. and Tiedje, J. M., "General method for determining anaerobic biodegradation potential", Appl. Environ. Microbiol., 47, pp. 850-857 (1984).
  10. 김현우, "고온/중온 혐기성 연속회분식 반응조를 이용한 하수슬러지와 음식물쓰레기의 혼합소화 및 바이오에너지 회수", 박사학위논문 (2006).
  11. Xiangwen, S., Dangcong, P., Zhaohua, T. and Xinghua, J., "Treatment of brewery wastewater using anaerobic sequencing batch reactor (ASBR)", Bioresource Technology, 99, pp. 3182-3186 (2008). https://doi.org/10.1016/j.biortech.2007.05.050
  12. APHA-AWWA-WEF, Standard Methods for the Examination of Water and Wastewater, 18th edition, Am. Public Health Assoc., Washington, D. C., USA (1992).
  13. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F.," Colormetric method for determination of sugars and related substances", Anal, Chem., 28(3), pp. 350-356 (1956). https://doi.org/10.1021/ac60111a017
  14. Wang, J., Huang, Y. and Zhao, X., "Performance and characteristics of an anaerobic baffled reactor", Bioresource Technology, 93, pp. 205-208 (2004). https://doi.org/10.1016/j.biortech.2003.06.004
  15. Samir, K. K., Anaerobic Biotechnology for Bioenergy Production, Wiley- Blackwell, pp. 109-110 (2008).
  16. Uyanik, S., Sallis, P. J. and Anderson, G. K., "The effect of polymer addition on granulation in an anaerobic baffled reactor (ABR). Part I: process perform ance", Water Research, 36, pp. 933-943 (2002). https://doi.org/10.1016/S0043-1354(01)00315-3
  17. Mutnan, M., Mrafkova, L., Drtil, M. and Derco, J., "Methanogenic and nonme thanogenic activity of granulated sludge in anaerobic baffled reactor", Chem. Papers, 53(6), pp. 374-378 (1999).