시계열 예측에 있어서 과거의 측정치 보다 최근의 측정치가 미래의 측정치 예측에 중요한 영향을 미친다. 시계열 예측에 있어서 최근의 측정치와 과거의 측정치가 미래의 값을 예측하는 인자로서 차별화 되어 학습해야 할 것이다. 기존의 시계열에 대한 신경망 접근에서는 최근의 측정치에 대한 학습 패턴과 과거의 측정치에 대한 학습 패턴을 동일하게 학습하였다. 이 논문에서는 과거의 학습패턴과 최근의 학습 패턴을 학습 횟수 면에서 차별화 하였다. 이러한 학습을 이 논문에서는 차별학습이라 한다. 차별학습에서는 주어진 학습 패턴을 시간 순으로 나열하고 일정 개수로 분할한다. 시간의 역순에 의해 등차 또는 등비의 형태로 학습 횟수를 설정한다. 각 학습 패턴의 분말집단을 시간의 역순으로 일정 횟수를 감소시켜 학습 횟수를 설정하는 등차차별학습과 일정 비율로 감소시켜 학습횟수를 설정하는 등비차별학습을 소개한다. 기존의 신경망 접근 방법과 이 논문에서 제안한 신경망 접근방법을 비교하기 위해 Mackay-Galss 공식에 의해 인공적으로 생성된 시계열 데이터를 예로 사용하였다.
본 논문에서는 심근허혈 질환을 효율적으로 분류하기 위한 신경망을 설계하였다. European ST-T DB의 심전도로부터 ST 분절의 특징을 추출하여 입력노드를 결정하고 10개의 학습률과 학습 횟수에 따른 신경망의 MES를 계산하였다. 실험 결과 특징 파라미터의 조합을 ST0, ST80, Slope, Area로 하였을 때 MSE를 가장 작았다. 이러한 특징 파라미터를 이용하여 신경망의 입력으로 학습시킨 경우 학습 횟수의 증가에 따라 MSE가 지수합수적으로 감소하였으며 1,000회 이상에서는 둔하게 감소하였다. 또한 학습 횟수가 5,000회, 10,000회, 15,000회 각각의 경우에 대하여 학습률을 0.01부터 0.7까지 증가시키면서 MSE를 계산한 결과 학습 횟수가 증가할수록 MSE를 최소로 하는 최적학습률이 0.1부터 0.04까지 감소하였다.
본 연구는 NCS기반 수업의 효과성과 매력성을 알아보기 위해 교수자의 관점에서 직무수행능력 평가횟수와 학습만족도 및 학습성과와의 관련성을 규명하고자 하였다. 연구결과, 교수자들은 NCS기반 수업에서 직무수행능력 평가횟수 3회 이상 적용할 때, 그리고 1회 평가시 평가방법 갯수 3개 이상 적용할 때 학습만족도가 더 높다고 인식하고 있었다. 반면 통계적으로 유의하지는 않았으나, 직무수행능력 평가횟수 3회 이상일 때와 평가 1회당 평가방법 갯수 3개 이상 적용할 때 학습성과가 더 높다고 인식하고 있는 것으로 나타났다. 본 연구결과를 통해 NCS기반 수업에서 직무수행능력 평가횟수와 평가방법 갯수가 학습과 관련있는 잠재적 구인임을 확인할 수 있었다. NCS기반 수업에서 직무수행능력평가가 학습성과를 평가하는 것 뿐 아니라 교수학습 활동의 일환이자 과정적 도구의 개념으로 적용된다면, 수업의 효과성과 매력성을 높이는데 기여할 수 있을 것으로 판단된다.
동일한 작업을 반복하여 수행하는 불확실한 로봇 시스템을 위한 P형 반복 학습 제어기를 제안한다. 제안된 반복 학습 제어기는 조인트 위치 오차로 구성되는 선형 피드백 제어기와 현재의 조인트 속도 오차로 갱신되는 피드포워드 및 피드백 학습 제어기로 구성된다. 반복 작업 동작이 계속 진행됨에 따라 조인트 위치와 속도 오차는 균일하게 0으로 수렴한다. 반복 횟수에 따라 변화하는 학습 이득을 채택함으로서 반복 횟수 영역에서 임의적으로 수렴 비율을 조절할 수 있는 조인트 위치, 속도 오차한계를 제시하고, 조인트 위치와 속도 오차는 그 한계 내에서 반복 횟수 영역에서 0으로 수렴한다. 기존의 P형 반복 학습 제어기와는 달리 제안된 반복 학습 제어 알고리즘은 학습 이득을 적절하게 설계함으로써 반복 횟수 영역에서 오차 수렴 비율의 분석과 조정을 가능하게 하는 장점이 있다.
본 연구는 현재 운영 중인 자동기상관측장비인 ASOS와 AWS의 결측에 대해 안공신경망을 활용하여 주변 관측값을 기반으로 결측을 보완하기 위한 연구이다. 2011년부터 2015년까지 수집된 서울지역 기온, 습도, 풍속을 대상으로 학습데이터를 구성하고 인공신경망을 통해 학습모델을 구축하였으며, 서울관측소를 결측으로 가정하고 학습 모델에 대한 검증을 수행하였다. 학습횟수 증가에 따른 민감도 실험 결과 초기종료는 학습횟수 2,000회에서 나타났다. 관측과 추정치의 상관관계는 모든 기상변수에서 0.6이상이었으며 기온과 습도의 경우 각각 0.9, 0.8 이상의 높은 상관성을 보였다. RMSE는 대부분 기상변수에 대해 학습횟수가 증가함에 따라 꾸준히 감소하지만 풍속의 경우 뚜렷한 증감 경향이 나타나지 않았다. 학습시간은 학습횟수가 증가할수록 지수함수적으로 증가하는 경향을 보였다. 학습 횟수 40회의 ANN 성능은 초기종료 시점까지 향상된 결과에 80%이상의 효과를 볼 수 있으며 2초 내의 빠른 학습시간으로 신속한 결측 보완을 통해 보다 상세한 기상정보의 활용이 가능할 것으로 기대된다.
본 논문에서는 온 디바이스 국방 AI를 위한 효율적인 학습 방법을 제안한다. 제안하는 방법은 모델 전체를 재학습하는 대신 필요한 부분만 세밀하게 조정하여 계산 비용과 시간을 대폭 줄이는 PEFT 기법의 LoRa를 적용하였다. LoRa는 기존의 신경망 가중치를 직접 수정하지 않고 추가적인 낮은 랭크의 매트릭스를 학습하는 방식으로 기존 모델의 구조를 크게 변경하지 않으면서도, 효율적으로 새로운 작업에 적응할 수 있다. 또한 학습 파라미터 및 연산 입출력에 데이터에 대하여 32비트의 부동소수점(FP32) 대신 부동소수점(FP16, FP8) 또는 정수형(INT8)을 활용하는 경량화 기법인 양자화도 적용하였다. 적용 결과 학습시 요구되는 GPU의 사용량이 32GB에서 5.7GB로 82.19% 감소함을 확인하였다. 동일한 조건에서 동일한 데이터로 모델의 성능을 평가한 결과 동일 학습 횟수에선 LoRa와 양자화가 적용된 모델의 오류가 기본 모델보다 53.34% 증가함을 확인하였다. 모델 성능의 감소를 줄이기 위해서는 학습 횟수를 더 증가시킨 결과 오류 증가율이 29.29%로 동일 학습 횟수보다 더 줄어듬을 확인하였다.
본 연구는 공과대학 학생들이 온라인 학습을 진행하였을 때 노트 필기를 병행하며 학습을 하는 경우에 대해 학습 효과 및 만족도, 집중력에 미치는 영향에 대해 연구하였다. 온라인 학습에서 학습 도구로 사용하기 위한 양식으로 코넬노트를 사용하였다. 설문 조사 결과, 학생들은 온라인 학습에서의 노트 필기가 수업 참여의 성실성, 적극성, 집중력에 도움이 되는 것으로 파악되었다. 통계 분석 결과, 노트 필기 제출 횟수와 학업성취도와의 양의 상관관계를 확인하였으며 단일/다중 회귀분석을 통해서 노트 필기 제출 횟수와 학업 성취도가 통계적으로 유의미함을 확인하였다. 다중 회귀 분석 결과, 평균적으로 학생들의 노트 필기 제출 횟수가 1회 증가할 경우, 이는 중간고사 점수 0.253점, 기말고사 점수 0.287점 상승에 통계적으로 유의미한 것을 확인하였다. 부트스트래핑 회귀분석을 실시한 결과에서도 필기노트 제출 횟수가 성적과도 유의미한 결과를 얻어 단일/다중회귀 분석의 결과가 적정함을 확인하였다. 온라인 상에서 강의를 수강하며 노트를 필기하고 온라인 제출함으로써 온라인 수업에서 학습의 질을 높일 수 있는 수업 전략이 될 수 있음을 확인하였다.
본 논문에서는 영상인식을 위한 딥 러닝에서 사용되는 매개변수 최적화 방법을 제안한다. 학습 성능에 영향을 미치는 매개변수 중 이미지 배치 사이즈 값, 초기 학습율, 최대 학습 반복 횟수에 대해 상호간의 관계를 분석하고 성능을 개선시키기 위해 값을 최적화하는 방법을 연구한다. 제안된 방법을 통한 개선 정도를 분석하기 위해 매개변수의 변화에 따른 학습 소요 시간, 정확도 향상 추이, 메모리 사용량의 변화를 측정한다. 측정된 학습 소요 시간, 정확도 향상 추이, 메모리 사용량의 변화를 분석한 결과 배치 사이즈와 초기 학습 율은 같은 비율로 반비례하게 값을 적용할 때가 이상적 이였으며 서로 다른 환경에서 각각의 학습 소요시간을 측정하는 것으로 배치 사이즈 값과 초기 학습 율에 따른 최적의 최대 학습 반복 횟수를 획득할 수 있었다.
방송고 학습자의 배경 변인별 학습 현황과 학습 태도에 따라 형성평가 결과가 차이가 있는지를 탐색하고자 2018년 1학기동안 방송고 사이버교육시스템을 통해 영어, 수학, 통합사회, 통합과학을 학습한 1학년 2,965명의 로그데이터를 분석하였다. 학습자의 성별, 연령, 소속 학교의 지역에 따라 학습 현황을 살펴보았으며 차시당 학습 횟수, 진도율, 학습 기간, 학습 시작 월, 차시별 형성평가 성적 등을 분석하였다. 또한 학습 성실도를 파악하기 위해 차시별 학습 빈도를 포함하여 왜도와 첨도를 구하여 성실한 학습 태도가 학업 성취에 미치는 영향을 검증하였다. 그 결과, 차시당 평균 학습 횟수, 학습 기간, 진도율, 성적 등 거의 모든 분야에서 여성이 남성보다 높게 나타났고 연령별로는 대체로 나이가 많은 수록 높게 나타났다. 지역별로는 서울 지역이 다른 지역보다 높게 나타났다. 방송고 학습자들의 평균 학습 기간은 2~3개월인 것으로 나타났고 학습 기간이 길수록 형성평가 성적도 높은 것으로 나타났다. 마지막으로 특정 시기에 집중하여 학습하는 학습자보다 학습 횟수가 짧더라도 꾸준히 학습하는 학습자들의 형성평가 점수가 높은 것으로 나타났다.
사용자 맞춤 서비스를 위하여 온라인상에서 사용자의 관심 분야를 파악하고자 하는 경우에는 적은 수의 훈련 예제로 효율적인 학습이 가능한 능동적 학습이 적절하다. 능동적 학습을 효과적으로 적용하기 위하여 사용자에게 문의할 가치가 높은 예제를 선정하는 것도 중요하지만, 사용자 편의를 위해서는 문의 횟수를 가능한 최소화하여야 한다. 문의 횟수를 줄이면서도 많은 수의 훈련 예제를 획득하기 위해서는 복수의 문의 예제들을 사용자에게 한꺼번에 제시하고 그 관심 여부를 표한하게 하는 것이 효과적이다. 본 논문에서는 능동적 학습 적용 시 사용자에게 문의할 가치가 높은 복수 문의 예제들을 효과적으로 선정하기 위하여 가중치 반영 군집화를 적용하는 방안을 제안한다. 본 제안 방안은 먼저 각 예제의 문의 예제로서의 가치를 파악하고 이를 가중치로 삼아 군집화를 수행하여 상대적으로 유사한 예제들의 집합을 구성한다. 이어서 생성된 각각의 군집에서 가장 보편적인 예제를 문의 예제로 선정하면 선정된 각각의 문의 예지는 문의할 가치가 높으면서 함께 문의하게 될 예제들은 서로 충분히 달라 학습에 보다 유용하게 사용할 수 있는 훈련 예제들을 얻을 수 있다. 문서 분류 문제를 대상으로 본 제안 방안을 실험한 결과, 단순히 문의 가치가 높은 복수의 예제들을 함께 문의할 예제들로 선정하는 방안에 비해 학습 성능이 뛰어났으며, 한 번에 문의하는 예제 수를 증가시키더라도 분류기의 성능 저하가 적음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.