• Title/Summary/Keyword: 학생들의 해결방법

Search Result 845, Processing Time 0.034 seconds

수학과 협동 학습에서 협동적 문제 해결의 평가

  • Kim, Nam-Gyun;Lee, Gi-Seok
    • Communications of Mathematical Education
    • /
    • v.9
    • /
    • pp.31-40
    • /
    • 1999
  • 요즈음 수학 수업에서 협동 학습을 활용하여 문제 해결을 하는 경우가 많이 늘었다. 학생들이 소집단에서 함께 활동하면 더 나은 문제 해결자가 된다는 것을 알기 때문이다. 그러나 학생들에게 협동적인 상황에서 문제 해결을 하게 하면서 그 평가는 개인 평가나 전통적인 평가에 그치는 경우가 많다. 소집단 협동 학습은 소집단의 구성원이 협동을 할 때 그 효과가 큰 것이며, 소집단 협동 학습에서의 평가는 소집단에 있는 학생들이 수행한 것을 참되게(Authentic) 평가하여야 문제 해결에 대한 올바른 정보를 얻을 수 있고 각 학생들로 하여금 협동 학습에 적극적으로 참여하여 문제를 해결하게 할 수 있다. 만일 협동적인 문제 해결을 하였는데 개인 평가를 실시한다면 학생들은 집단에서 협동할 필요성을 적게 느끼게 되어, 학생들은 협동 학습에 적극적으로 참여하지 않으려 할 것이다. 1990년대 수학교육에 많은 영향을 끼치고 있는 NCTM의 Curriculum and Evaluation Standard for School Mathematics에서도 수학 지도 방법과 평가 방법이 일치하여야 한다고 강조하고 있다. 본고에서는 이와 같은 필요성에 의거하여 수학과 소집단 협동 학습의 유형을 알아보고, 협동적 문제 해결의 평가 방법을 알아보고자 한다.

  • PDF

Mathematically Gifted Students' Problem Solving Approaches on Conditional Probability (수학 영재 학생들의 조건부 확률 문제해결 방법)

  • Na, Gwi-Soo;Lee, Kyung-Hwa;Han, Dae-Hee;Song, Sang-Hun
    • School Mathematics
    • /
    • v.9 no.3
    • /
    • pp.397-408
    • /
    • 2007
  • This research intends to look into how mathematically gifted 6th graders (age12) who have not learned conditional probability before solve conditional probability problems. In this research, 9 conditional probability problems were given to 3 gifted students, and their problem solving approaches were analysed through the observation of their problem solving processes and interviews. The approaches the gifted students made in solving conditional probability problems were categorized, and characteristics revealed in their approaches were analysed. As a result of this research, the gifted students' problem solving approaches were classified into three categories and it was confirmed that their approaches depend on the context included in the problem.

  • PDF

An Analysis of a Teacher's Formalization Procedure Based on Students' Various Solution Methods in Teaching the Area of Plane Figures (평면도형의 넓이 수업에서 학생들의 다양한 해결 방법에 근거한 교사의 형식화 도출 과정 분석)

  • Kim, SangHwa;Pang, JeongSuk;Jung, YooKyung
    • School Mathematics
    • /
    • v.15 no.4
    • /
    • pp.847-866
    • /
    • 2013
  • The purpose of this study was to analyze students' various solution methods revealed in the lessons of finding out the area of plane figures, and to explore instructional implications on how to draw meaningful formalization out of such multiple methods. The teacher in this study tended to select a few solution methods that were easy for students to understand and to induce formalization. An analysis of students' solution methods and the process of formalization showed that students need to understand what parts of the length of the given plane figure they should know, and to identify the base, height, and diagonal line of the figure. The analysis also showed that it was effective to choose the solution methods that were used by many students and that could be easily transformed into a concise formula. Based on these results, this paper provides instructional suggestions for a teacher to orchestrate classroom discussion toward formalization based on students' multiple solution methods.

  • PDF

Analysis on number sense for problem solving methods of elementary and middle school students (초등학생과 중학생의 수감각 문제해결 방법에 대한 분석)

  • Kim, Ji Youn;Hyun, Eun Jeong;Kim, Seong Kyeong
    • Communications of Mathematical Education
    • /
    • v.29 no.1
    • /
    • pp.1-18
    • /
    • 2015
  • Mathematics education emphasizes on nurturing number sense, but researches on this have been scarce, and most of them has been confined to elementary level students. This thesis, therefore, tried to analyze how elementary students solve mathematics sense problems in order to give some insight into how to teach number sense. For this, this thesis categorized into two ways of using number sense and algorithm as problem solving, and analyzed students' responses using test sheets. Accordingly, middle school students showed higher score on the number sense test and higher rates of using number sense than elementary students. In addition, students showing higher achievement used both number sense and algorithm, but those of lower achievement were more likely to use only algorithm. Plus, among students showing higher achievement, middle school students used more number sense than elementary school students, but there was not meaningful difference among those showing lower achievement. Lastly, It was shown that there was difference in the rate using number sense according to the number sense components.

Analysis of Learners' Preferences for Computer Solving Methods (학습자의 컴퓨터 문제해결 선호방법 분석)

  • Park, Sunju
    • Journal of The Korean Association of Information Education
    • /
    • v.22 no.1
    • /
    • pp.113-122
    • /
    • 2018
  • Collaboration and assistance among peer learners are essential factors for successful learning outcomes. However it is important to investigate students' preferences for computer problem solving methods and interrelationships, since students tend to solve problems more and more by themselves. This is because of the importance of giving appropriate instructions to students. In this context, this paper shows the analysis of the preferred methods and interrelationships of studnets' preferences upon encountering difficulties during computer usage by collecting data from 231 students in K national university of education. As a result, the result shows that students tend to solve problems without asking as they have higher abilities in computer usage, which was also shown to increase along with their grade levels. Furthermore, it showed that students who have family members and relatives, and who are using the internet are more satisfied with their problem solving. Lastly, it is possible to grasp the computer problem solving network within the department by using social network analysis, so it can be used as reference data for selecting the peer learners, which will help to operate the customized computer education practice.

소수 학습에서 메타 인지적 사고가 문제 해결력에 미치는 영향

  • Han, Gil-Jun;Lee, Yang-Gi
    • Communications of Mathematical Education
    • /
    • v.19 no.1 s.21
    • /
    • pp.271-290
    • /
    • 2005
  • 오래 전부터 수학과의 연구는 학생들의 문제 해결력에 관하여 집중되어 온 것이 사실이다. 그럴 때마다 수학적 사고력에 관한 연구도 상당히 많은 부분이 있어 왔다. 본고에서는 학생들의 수학적 사고를 돕기 위한 방법으로 메타 인지를 강조함으로써 보다 까다로운 (비정형) 문제들의 문제 해결을 돕고자 하였다. 따라서 메타 인지를 유발하는 수업(소수 학습)을 통하여 학생들의 문제 해결력(정형 - 비정형)에서 유의미한 차이가 있는지를 알아보고, 궁극적으로는 메타 인지적 사고가 비정형 문제들을 해결하는 데 미치는 영향을 밝혀 수학 학습의 발전 방안을 찾고자 한다.

  • PDF

Research for Distinctive Features of Geometry Problem Solving According to Achievement Level on Middle School Students (중학생의 성취수준에 따른 기하 문제해결의 특징 탐색)

  • Kim Ki-Yoen;Kim Sun-Hee
    • School Mathematics
    • /
    • v.8 no.2
    • /
    • pp.215-237
    • /
    • 2006
  • In this study, we research distinctive features of geometry problem solving of middle school students whose mathematical achievement levels are distinguished by National Assessment of Educational Achievement. We classified 9 students into 3 groups according to their level : advanced level, proficient level, basic level. They solved an atypical geometry problem while all their problem solving stages were observed and then analyzed in aspect of development of geometrical concepts and access to the route of problem solving. As those analyses, we gave some suggestions of teaching on mathematics as students' achievement level.

  • PDF

An Analysis on the Problem Solving of Korean and American 3rd Grade Students in the Addition and Subtraction with Natural Numbers (한국과 미국 초등학교 3학년 학생들의 자연수 덧셈과 뺄셈 문제해결 분석)

  • Lee, Dae Hyun
    • Education of Primary School Mathematics
    • /
    • v.19 no.3
    • /
    • pp.177-191
    • /
    • 2016
  • Students can calculate the addition and subtraction problem using informal knowledge before receiving the formal instruction. Recently, the value that a computation lesson focus on the understanding and developing the various strategies is highlighted by curriculum developers as well as in reports. Ideally, a educational setting and classroom culture reflected students' learning and problem solving strategies. So, this paper analyzed the similarity and difference with respect to the numeric sentence and word problem in the addition and subtraction. The subjects for the study were 100 third-grade Korean students and 68 third-grade American students. Researcher developed the questionnaire in the addition and subtraction and used it for the survey. The following results have been drawn from this study. The computational ability of Korean students was higher than that of American students in both the numeric sentence and word problem. And it was revealed the differences of the strategies which were used problem solving process. Korean students tended to use algorithms and numbers' characters and relations, but American students tended to use the drawings and algorithms with drawings.

수학적 지식의 구조와 문제 해결을 통한 탐구학습

  • Park, Hye-Gyeong;Jeon, Pyeong-Guk
    • Communications of Mathematical Education
    • /
    • v.19 no.2 s.22
    • /
    • pp.389-407
    • /
    • 2005
  • 수학은 위계적이고 구조적인 특성을 가지고 있어서 학생들이 적절하게 학습하면 내적 동기유발이 가능하고 흥미 있게 학습해 나갈 수 있는 반면 단편적인 지식들로 학습하려 한다면 그 양이 방대해지고 제대로 이해하기가 어렵다. 그러므로 교사는 수학적 지식의 구조를 깨달아 지식의 본체가 내적으로 어떻게 조직되고 상호 관련되어 있는지 알아야 하고 학생들이 수학적인 아이디어와 절차를 획득하고 탐구하게 하는 적절한 문제를 제시하여 문제해결을 통해 가르쳐 가는 방법을 생각해야 할 것이다. 이 때에 학생들은 문제해결 과정에서 능동적인 역할을 하면서 자신이 학습하고 있는 것의 핵심을 인식하고 호기심을 갖고 유의미한 기능들을 이끌어내는 학습을 해야 하는데, 이는 오랜 전통의 탐구 학습과 그 맥락을 같이 하는 것이다. 수학교과 고유의 특성을 살려 지식의 구조를 가르침에 있어서 교수 방법으로의 문제해결을 통한 지도와 학습 방법으로의 탐구학습 과정은 잘 조화될 수 있다. 이러한 조화된 모습을 드러나게 하고자 초등학교 5학년 가 단계에서 '평면도형의 넓이와 둘레 사이의 관계'를 탐구하게 하는 문제해결을 통한 탐구학습 과제를 제시해 보았다. 30-40년을 거슬러 올라가는 역사를 갖는 지식의 구조나 탐구학습, 문제해결에 대한 관심은 오늘날에도 여전히 시사하는 바가 크다고 하겠다. 수학교육에 관한 연구들은 완전히 새로운 것이기보다는 이전의 것들이 주는 의미를 되새기고 오늘의 상황에 비추어 해석할 때 수학교육은 한 단계 올라서게 된다.

  • PDF

An Analysis of the Transformation Process of Representation through Interaction in Mathematical Problem Solving (수학적 문제해결에서 상호작용을 통한 표상의 변환 과정 분석)

  • Lee, Min Ae;Kang, Wan
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.16 no.3
    • /
    • pp.427-450
    • /
    • 2012
  • Using representations is essential for students to organize their thinking, to solve problems and to communicate each other. Students express information or situations suggested by problems easily and organize and infer them systematically using representations. Also, teachers are able to comprehend students' levels of understanding and thinking process better through them, and influence their representations. This study was conducted to understand mathematical representations of students uprightly and to seek implications for proper teaching of representations, by analyzing representations of students in mathematical problem solving process and the transformation process of representation via interactions.

  • PDF