• Title/Summary/Keyword: 필터 링

Search Result 3,392, Processing Time 0.032 seconds

Development of an AIDA(Automatic Incident Detection Algorithm) for Uninterrupted Flow Based on the Concept of Short-term Displaced Flow (연속류도로 단기 적체 교통량 개념 기반 돌발상황 자동감지 알고리즘 개발)

  • Lee, Kyu-Soon;Shin, Chi-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.2
    • /
    • pp.13-23
    • /
    • 2016
  • Many traffic centers are highly hesitant in employing existing Automatic Incident Detection Algorithms due to high false alarm rate, low detection rate, and enormous effort taken in maintaining algorithm parameters, together with complex algorithm structure and filtering/smoothing process. Concerns grow over the situation particularly in Freeway Incident Management Area This study proposes a new algorithm and introduces a novel concept, the Displaced Flow Index (DiFI) which is similar to a product of relative speed and relative occupancy for every execution period. The algorithm structure is very simple, also easy to understand with minimum parameters, and could use raw data without any additional pre-processing. To evaluate the performance of the DiFI algorithm, validation test on the algorithm has been conducted using detector data taken from Naebu Expressway in Seoul and following transferability tests with Gyeongbu Expressway detector data. Performance test has utilized many indices such as DR, FAR, MTTD (Mean Time To Detect), CR (Classification Rate), CI (Composite Index) and PI (Performance Index). It was found that the DR is up to 100%, the MTTD is a little over 1.0 minutes, and the FAR is as low as 2.99%. This newly designed algorithm seems promising and outperformed SAO and most popular AIDAs such as APID and DELOS, and showed the best performance in every category.

Automatic Extraction of Buildings using Aerial Photo and Airborne LIDAR Data (항공사진과 항공레이저 데이터를 이용한 건물 자동추출)

  • 조우석;이영진;좌윤석
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.307-317
    • /
    • 2003
  • This paper presents an algorithm that automatically extracts buildings among many different features on the earth surface by fusing LIDAR data with panchromatic aerial images. The proposed algorithm consists of three stages such as point level process, polygon level process, parameter space level process. At the first stage, we eliminate gross errors and apply a local maxima filter to detect building candidate points from the raw laser scanning data. After then, a grouping procedure is performed for segmenting raw LIDAR data and the segmented LIDAR data is polygonized by the encasing polygon algorithm developed in the research. At the second stage, we eliminate non-building polygons using several constraints such as area and circularity. At the last stage, all the polygons generated at the second stage are projected onto the aerial stereo images through collinearity condition equations. Finally, we fuse the projected encasing polygons with edges detected by image processing for refining the building segments. The experimental results showed that the RMSEs of building corners in X, Y and Z were 8.1cm, 24.7cm, 35.9cm, respectively.

Development of Android Smart Phone App for Analysis of Remote Sensing Images (위성영상정보 분석을 위한 안드로이드 스마트폰 앱 개발)

  • Kang, Sang-Goo;Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.561-570
    • /
    • 2010
  • The purpose of this study is to develop an Android smartphone app providing analysis capabilities of remote sensing images, by using mobile browsing open sources of gvSIG, open source remote sensing software of OTB and open source DBMS of PostgreSQL. In this app, five kinds of remote sensing algorithms for filtering, segmentation, or classification are implemented, and the processed results are also stored and managed in image database to retrieve. Smartphone users can easily use their functions through graphical user interfaces of app which are internally linked to application server for image analysis processing and external DBMS. As well, a practical tiling method for smartphone environments is implemented to reduce delay time between user's requests and its processing server responses. Till now, most apps for remotely sensed image data sets are mainly concerned to image visualization, distinguished from this approach providing analysis capabilities. As the smartphone apps with remote sensing analysis functions for general users and experts are widely utilizing, remote sensing images are regarded as information resources being capable of producing actual mobile contents, not potential resources. It is expected that this study could trigger off the technological progresses and other unique attempts to develop the variety of smartphone apps for remote sensing images.

Water Depth and Riverbed Surveying Using Airborne Bathymetric LiDAR System - A Case Study at the Gokgyo River (항공수심라이다를 활용한 하천 수심 및 하상 측량에 관한 연구 - 곡교천 사례를 중심으로)

  • Lee, Jae Bin;Kim, Hye Jin;Kim, Jae Hak;Wie, Gwang Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.4
    • /
    • pp.235-243
    • /
    • 2021
  • River surveying is conducted to acquire basic geographic data for river master plans and various river maintenance, and it is also used to predict changes after river maintenance construction. ABL (Airborne Bathymetric LiDAR) system is a cutting-edge surveying technology that can simultaneously observe the water surface and river bed using a green laser, and has many advantages in river surveying. In order to use the ABL data for river surveying, it is prerequisite step to segment and extract the water surface and river bed points from the original point cloud data. In this study, point cloud segmentation was performed by applying the ground filtering technique, ATIN (Adaptive Triangular Irregular Network) to the ABL data and then, the water surface and riverbed point clouds were extracted sequentially. In the Gokgyocheon river area, Chungcheongnam-do, the experiment was conducted with the dataset obtained using the Leica Chiroptera 4X sensor. As a result of the study, the overall classification accuracy for the water surface and riverbed was 88.8%, and the Kappa coefficient was 0.825, confirming that the ABL data can be effectively used for river surveying.

A Study on the Safety Code Development of Gas Engine Micro Combined Heat and Power System (소형 가스엔진 열병합 발전시스템 안전기준 개발)

  • Kwon, Jun-Yeop;Kim, Min-Woo;Lee, Jung-Woon
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.27-35
    • /
    • 2021
  • Recently, as a solution to the sharp drop in "power reserve ratio", it is being converted to a microgrid that enables bi-directional transmission and distribution. A microgrid is composed of a small-scale distributed power supply and a load. As a representative technology of distributed power generation, there is a Micro Combined Heat and Power system applied to homes and buildings. In this study, a safety standard was developed by dividing the power generation system, cooling system, lubrication system, and exhaust system to derive safety standards for a small gas engine power generation system with a gas consumption less than 232.6kW (200,000 kcal/h). In the case of the power generation system, a filter was installed and the system was stopped by detecting gas leakage and abnormalities in engine speed or output and the cooling system is stipulated to stop the system in case of insufficient cooling water or overheating. The lubrication system monitors the pressure and temperature of the lubricating oil and stops the system when an abnormality occurs, and the exhaust gas emission concentration regulation value was specified in accordance with domestic and foreign standards. Through the results of this study, it is judged that the safety of the gas engine power generation system can be improved and it can contribute to the commercialization of products.

Privacy-Preserving Parallel Range Query Processing Algorithm Based on Data Filtering in Cloud Computing (클라우드 컴퓨팅에서 프라이버시 보호를 지원하는 데이터 필터링 기반 병렬 영역 질의 처리 알고리즘)

  • Kim, Hyeong Jin;Chang, Jae-Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.9
    • /
    • pp.243-250
    • /
    • 2021
  • Recently, with the development of cloud computing, interest in database outsourcing is increasing. However, when the database is outsourced, there is a problem in that the information of the data owner is exposed to internal and external attackers. Therefore, in this paper, we propose a parallel range query processing algorithm that supports privacy protection. The proposed algorithm uses the Paillier encryption system to support data protection, query protection, and access pattern protection. To reduce the operation cost of a checking protocol (SRO) for overlapping regions in the existing algorithm, the efficiency of the SRO protocol is improved through a garbled circuit. The proposed parallel range query processing algorithm is largely composed of two steps. It consists of a parallel kd-tree search step that searches the kd-tree in parallel and safely extracts the data of the leaf node including the query, and a parallel data search step through multiple threads for retrieving the data included in the query area. On the other hand, the proposed algorithm provides high query processing performance through parallelization of secure protocols and index search. We show that the performance of the proposed parallel range query processing algorithm increases in proportion to the number of threads and the proposed algorithm shows performance improvement by about 5 times compared with the existing algorithm.

Detection for Region of Volcanic Ash Fall Deposits Using NIR Channels of the GOCI (GOCI 근적외선 채널을 활용한 화산재 퇴적지역 탐지)

  • Sun, Jongsun;Lee, Won-Jin;Park, Sun-Cheon;Lee, Duk Kee
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1519-1529
    • /
    • 2018
  • The volcanic ash can spread out over hundreds of kilometers in case of large volcanic eruption. The deposition of volcanic ash may induce damages in urban area and transportation facilities. In order to respond volcanic hazard, it is necessary to estimate efficiently the diffusion area of volcanic ash. The purpose of this study is to compare in-situ volcanic deposition and satellite images of the volcanic eruption case. In this study, we used Near-Infrared (NIR) channels 7 and 8 of Geostationary Ocean Color Imager (GOCI) images for Mt. Aso eruption in 16:40 (UTC) on October 7, 2016. To estimate deposit area clearly, we applied Principal Component Analysis (PCA) and a series of morphology filtering (Eroded, Opening, Dilation, and Closing), respectively. In addition, we compared the field data from the Japan Meteorological Agency (JMA) report about Aso volcano eruption in 2016. From the results, we could extract volcanic ash deposition area of about $380km^2$. In the traditional method, ash deposition area was estimated by human activity such as direct measurement and hearsay evidence, which are inefficient and time consuming effort. Our results inferred that satellite imagery is one of the powerful tools for surface change mapping in case of large volcanic eruption.

A Visualization Technique of Inter-Device Packet Exchanges to Test DLNA Device Interoperability (DLNA 기기의 상호운용성 시험을 위한 패킷교환정보 시각화 방법)

  • Kim, Mijung;Jin, Feng;Yoon, Ilchul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.531-534
    • /
    • 2014
  • DLNA is an established industry standard which supports contents sharing among smart devices in home wired- and wireless-network environment and is well known in Korea as Allshare or Smartshare. The DLNA standard is implemented as built-in services in most of Android smart phones and tablets. In addition to the handheld devices, DLNA service can also be employed in speakers, printers, and so on. However, users have reported many interoperability issues between DLNA devices. Developers typically identify causes by analyzing the packet exchange information between devices. However, this approach costs them to put additional effort to filter relevant packets, to reconstruct packet exchange history and the protocol flow. Consequently, it ends up with increased development time. In this paper, we demonstrate a technique to automatically analyze and visualize the packet exchange history. We modified a router firmware to capture and store packets exchanged between DLNA devices, and then analyze and visualize the stored packet exchange history for developers. We believe that visualized packet exchange history can help developers to test the interoperability between DLNA devices with less effort, and ultimately to improve the productivity of developers.

  • PDF

Vital Sign Detection in a Noisy Environment by Undesirable Micro-Motion (원하지 않는 작은 동작에 의한 잡음 환경 내 생체신호 탐지 기법)

  • Choi, In-Oh;Kim, Min;Choi, Jea-Ho;Park, Jeong-Ki;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.418-426
    • /
    • 2019
  • Recently, many studies on vital sign detection using a radar sensor related to Internet of Things(IoT) smart home systems have been conducted. Because vital signs such as respiration and cardiac rates generally cause micro-motions in the chest or back, the phase of the received echo signal from a target fluctuates according to the micro-motion. Therefore, vital signs are usually detected via spectral analysis of the phase. However, the probability of false alarms in cardiac rate detection increases as a result of various problems in the measurement environment, such as very weak phase fluctuations caused by the cardiac rate. Therefore, this study analyzes the difficulties of vital sign detection and proposes an efficient vital sign detection algorithm consisting of four main stages: 1) phase decomposition, 2) phase differentiation and filtering, 3) vital sign detection, and 4) reduction of the probability of false alarm. Experimental results using impulse-radio ultra-wideband radar show that the proposed algorithm is very efficient in terms of computation and accuracy.

Detection of Apnea Signal using UWB Radar based on Short-Time-Fourier-Transform (국소 퓨리에 변환 기반 레이더 신호를 활용한 무호흡 검출)

  • Hwang, Chaehwan;Kim, Suyeol;Lee, Deokwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.151-157
    • /
    • 2019
  • Recently, monitoring respiration of people has been of interest using non-invasive method. Among the vital signals usually used for indicating health status, non-invasive and portable device based monitoring respiratory status is practically useful and enable one to promptly deal with abnormal physical status. This paper proposes the approach to real-time detection of apnea signal based on Short-Time-Fourier-Transform(STFT). Contrary to the analysis of a signal in frequency domain using Fast-Fourier Transform, this paper employs Short-time-Fourier-Transform so that frequency response can be analyzed in short time interval. The respiratory signal is acquired using UWB radar sensor that enables one to obtain respiration signal in contactless way. Detection of respiratory status is carried out by analyzing frequency response, and classification of respiratory status can be provided. In particular, STFT is employed to analyze respiratory signal in real-time, leading to effective analysis of the respiratory status in practice. In the case of existence of noise in the signal, appropriate filtering process is employed as well. The proposed method is straightforward and is workable in practice to analyze the respiratory status of people. To evaluate the proposed method, experimental results are provided.