DOI QR코드

DOI QR Code

A Study on the Safety Code Development of Gas Engine Micro Combined Heat and Power System

소형 가스엔진 열병합 발전시스템 안전기준 개발

  • Kwon, Jun-Yeop (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Kim, Min-Woo (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Lee, Jung-Woon (Institute of Gas Safety R&D, Korea Gas Safety Corporation)
  • 권준엽 (한국가스안전공사 가스안전연구원) ;
  • 김민우 (한국가스안전공사 가스안전연구원) ;
  • 이정운 (한국가스안전공사 가스안전연구원)
  • Received : 2021.06.04
  • Accepted : 2021.08.26
  • Published : 2021.08.31

Abstract

Recently, as a solution to the sharp drop in "power reserve ratio", it is being converted to a microgrid that enables bi-directional transmission and distribution. A microgrid is composed of a small-scale distributed power supply and a load. As a representative technology of distributed power generation, there is a Micro Combined Heat and Power system applied to homes and buildings. In this study, a safety standard was developed by dividing the power generation system, cooling system, lubrication system, and exhaust system to derive safety standards for a small gas engine power generation system with a gas consumption less than 232.6kW (200,000 kcal/h). In the case of the power generation system, a filter was installed and the system was stopped by detecting gas leakage and abnormalities in engine speed or output and the cooling system is stipulated to stop the system in case of insufficient cooling water or overheating. The lubrication system monitors the pressure and temperature of the lubricating oil and stops the system when an abnormality occurs, and the exhaust gas emission concentration regulation value was specified in accordance with domestic and foreign standards. Through the results of this study, it is judged that the safety of the gas engine power generation system can be improved and it can contribute to the commercialization of products.

최근 "전력 예비율" 급감에 대한 해결책으로 양방향 송배전이 가능한 마이크로 그리드로 전환되고 있다. 마이크로 그리드는 소규모 분산전원과 부하로 구성되는데, 분산전원의 대표적인 기술로 가정·건물에 적용하는 소형 열병합 발전시스템이 있다. 본 연구에서 가스 소비량 232.6kW(20만 kcal/h) 이내의 소형 가스엔진 발전시스템의 안전기준을 도출하고 발전 시스템, 냉각시스템, 윤활 시스템, 배기 시스템으로 구분하여 안전기준(안)을 개발하였다. 발전시스템의 경우 필터를 설치하고 가스 누출 및 엔진 회전수나 출력에 이상이 발생할 경우 이를 감지하여 시스템이 정지하도록 하였고, 냉각시스템은 냉각수 부족이나 과열이 발생할 경우 시스템이 정지하도록 규정하였다. 윤활 시스템은 윤활유의 압력과 온도를 모니터링 하고 이상이 발생할 경우 시스템을 정지하도록 하고, 배기 시스템은 국내·외 기준과 부합하여 배기가스 배출 농도 규제 값을 지정하였다. 본 연구 결과를 통해 가스엔진 발전시스템의 안전성을 향상시키고 제품 확산·보급에 이바지할 수 있다고 판단한다.

Keywords

Acknowledgement

본 연구는 2018년도 정부(중소기업청)의 재원으로 WC300 프로젝트 기술개발지원사업의 지원을 받아 수행된 연구입니다.(No.S2563281, 소형 분산 열병합 발전시스템 개발)

References

  1. Oh, S. S., Low-carbon heating and cooling policies in Europe and the role of regional heating and cooling, Korea Energy Economics Institute, Korea, (2020)
  2. Kim, N. Y., and Lee, S. K., China's power system reform, Korea Energy Economics Institute, Korea, (2021)
  3. 3rd Energy Master Plan, Ministry of Trade, Industry and Energy, Korea, (2019)
  4. Kim, S. Y., Kim, M. W., Lee, E. K., and Lee, J. W., "A Study on the Safeth Management Methods of Micro-Gas Engine Combined Heat and Power System", Journal of the korean institute of gas, 22(6), 76-89, (2018) https://doi.org/10.7842/KIGAS.2018.22.6.76
  5. EN 50465, "European Product Standard for combined Heating Power System using Gas Fuel" European Norm, (2015)
  6. JIA F 025-06 "Regulation for Small Gas Engine Combined and Heat Power System Inspection", Japan Gas Appliances Inspection Association, (2009)
  7. KS B 8912, "Domestic Combined Heat and Power Generator using Internal Gas Combustion Engines - Performance Test Methods", Korean Agency of Technology and Standards, (2016)
  8. KS B 8913, "Combined Heat and Power Unit using Internal Gas Combustion Engines for Building - Performance Test Methods", Korean Agency of Technology and Standards, (2017)
  9. KS B 8914, "Combustion gas engine cogeneration system Electrical output greater than 20 kW and less than 50 kW", Korean Agency of Technology and Standards, (2018)
  10. KGS AB136, "Facility/Technical/Inspection Code for Manufacture of Gas Stirling Engine heat and power Boiler", Korea Gas Safety Corporation, (2018)
  11. KGS AA112, "Facility/Technical/Inspection Code for Manufacture of Gas Engine Heat Pumps Using High-pressure Gases", Korea Gas Safety Corporation, (2020)
  12. Choi, J. J., Park, H. C., "The Experimental Evaluation and Verification of a 300kW small Engine Cogeneration System", The Society Of Air-Conditioning And Refrigerating Engineers Of Korea, 332-337, (2009)
  13. Lee, J. H., Kim, Y. M., Choe, Y. H., Sin, D. S., Choe, M. H., Min, G. H., Choe, B. C., Lee, C. H., and Sin, D. H., "Development of 350kW gas engine power generation system using LFG", The Korean Society for New and Renewable Energy, 276-285, (2005)
  14. Ghaedi, A., Gorginpour, H., and Noroozi, E., "Operation Studies of the Power Systems Containing Combined Heat and Power Plants", Journal of Operation and Automation in Power Engineering, 9(2), 160-171, (2021)
  15. Son, H. S., Kim, D. H., Bang, H. S., "Study on the development and Field Application Tests of a Class Package Type Gas Engine Co-generation System", The Korean Society of Mechanical Engineers, 761-766, (1999)
  16. Kim, M. S., Baik, Y. J., Park, S. R., and Ra, H. S., "Observation Studies on Field Operation of a Exhausted Heat Recovery System for a 300 Class Small Gas Engine Cogeneration System", Korea Journal of Air-Conditioning and Refrigerator Engineering, 22(5), 248-257, (2010)
  17. EN 12309, "Gas-fired sorption appliances for heating and/or cooling with a net heat input not exceeding 70kW" European Norm (2014)
  18. Special Law on Air Environment Improvement in Air Management Areas, Congress, Korea, (2021)