Browse > Article
http://dx.doi.org/10.7780/kjrs.2018.34.6.4.5

Detection for Region of Volcanic Ash Fall Deposits Using NIR Channels of the GOCI  

Sun, Jongsun (Earthquake and Volcano Research Division, Earthquake and Volcano Bureau, Korea Meteorological Administration)
Lee, Won-Jin (Earthquake and Volcano Research Division, Earthquake and Volcano Bureau, Korea Meteorological Administration)
Park, Sun-Cheon (Earthquake and Volcano Research Division, Earthquake and Volcano Bureau, Korea Meteorological Administration)
Lee, Duk Kee (Earthquake and Volcano Research Division, Earthquake and Volcano Bureau, Korea Meteorological Administration)
Publication Information
Korean Journal of Remote Sensing / v.34, no.6_4, 2018 , pp. 1519-1529 More about this Journal
Abstract
The volcanic ash can spread out over hundreds of kilometers in case of large volcanic eruption. The deposition of volcanic ash may induce damages in urban area and transportation facilities. In order to respond volcanic hazard, it is necessary to estimate efficiently the diffusion area of volcanic ash. The purpose of this study is to compare in-situ volcanic deposition and satellite images of the volcanic eruption case. In this study, we used Near-Infrared (NIR) channels 7 and 8 of Geostationary Ocean Color Imager (GOCI) images for Mt. Aso eruption in 16:40 (UTC) on October 7, 2016. To estimate deposit area clearly, we applied Principal Component Analysis (PCA) and a series of morphology filtering (Eroded, Opening, Dilation, and Closing), respectively. In addition, we compared the field data from the Japan Meteorological Agency (JMA) report about Aso volcano eruption in 2016. From the results, we could extract volcanic ash deposition area of about $380km^2$. In the traditional method, ash deposition area was estimated by human activity such as direct measurement and hearsay evidence, which are inefficient and time consuming effort. Our results inferred that satellite imagery is one of the powerful tools for surface change mapping in case of large volcanic eruption.
Keywords
Volcanic ash; Volcano deposits; ASO; NIR channel;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Picchiani, M., M. Chini, S. Corradini, L. Merucci, P. Sellitto, F. Del Frate, and S. Stramondo, 2011. Volcanic ash detection and retrievals using MODIS data by means of neural networks, Atmospheric Measurement Techniques, 4: 2619-2631.   DOI
2 Raja, J., B. Muralikrishnan, and S. Fu, 2002. Recent advances in separation of roughness, waviness and form, Precision Engineering, 26(2): 222-235.   DOI
3 Robert, W., F. Luke, G. Harold, H. Andrew, and P. Eric, 2002. Automated volcanic eruption detection using MODIS, Remote Sensing of Environment, 82: 135-155.   DOI
4 Ryu, J. H., H. J. Han, S. Cho, Y. J. Park, and Y. H. Ahn, 2012. Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS), Ocean Science Journal, 47(3): 223-233.   DOI
5 Senthilkumaran, N. and S. Vaithegi, 2016. Image segmentation by using thresholding techniques for medical images, Computer Science & Engineering: An International Journal, 6(1): 1-13.   DOI
6 Shi, W. and M. Wang, 2011. Satellite observations of environmental changes from the Tonga volcano eruption in the southern tropical Pacific, International Journal of Remote Sensing, 32(20): 5785-5796.   DOI
7 Shin, J. S., W. Park, and J. S. Won, 2014. A Study of Tasseled Cap Transformation Coefficient for the Geostationary Ocean Color Imager (GOCI), Korean Journal of Remote Sensing, 30(2): 275-292 (in Korean with English abstract).   DOI
8 Otsu, N., 1979. A threshold selection method from gray level histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9(1): 62-66.   DOI
9 Singh, A., 1989. Review article digital change detection techniques using remotely-sensed data, International Journal of Remote Sensing, 10(6): 989-1003.   DOI
10 Celik, T., 2009. Unsupervised change detection in satellite images using principal component analysis and k-means clustering, IEEE Geoscience and Remote Sensing Letters, 6(4): 772-776.   DOI
11 Choi, Y. H., W. J. Lee, S. C. Park, J. Sun, and D. K. Lee, 2017. Retrieving Volcanic Ash Information Using COMS Satellite (MI) and Landsat-8 (OLI, TIRS) Satellite Imagery: A Case Study of Sakurajima Volcano, Korean Journal of Remote Sensing, 33(5): 587-598 (in Korean with English abstract).   DOI
12 Japan Meteorological Agency (JMA), 2016. Volcanic activity explanation material, http://www.jmanet. go.jp/fukuoka/, Accessed on Oct. 12, 2018.
13 Corradini, S., C. Spinetti, E. Carboni, C. Tirelli, M.F. Buongiorno, S. Pugnaghi, and G. Gangale, 2008. Mt.Etna tropospheric ash retrieval and sensitivity analysis using moderate resolution imaging spectroradiometer measurements, Journal of Application Remote Sensing, 2(1): 023500.
14 Di Bello, G., C. Filizzola, T. Lacava, F. Marchese, N. Pergola, C. Pietrapertosa, S. Piscitelli, I. Scaffidi, and V. Tramutoli, 2004. Robust satellite techniques for volcanic and seismic hazards monitoring, Annals of Geophysics, 47(1).
15 Ellrod, G. P., B. H. Connell, and D. W. Hillger, 2003. Improved detection of airborne volcanic ash using multispectral infrared satellite data, Journal of Geophysical Research: Atmospheres, 108: D12.
16 Global Volcanism Program(GVP), 2013. The Smithsonian Institution's Global Volcanism Program (GVP), http://volcano.si.edu/, Accessed on Oct. 12, 2018.
17 Ishimoto, H., K. Masuda, K. Fukui, T. Shimbori, T. Inazawa, H. Tuchiyama, K. Ishii, and T. Sakurai, 2016. Estimation of the refractive index of volcanic ash from satellite infrared sounder data, Remote sensing of environment, 174: 165-180.   DOI
18 Kanda, W., Y. Tanaka, M. Utsugi, S. Takakura, T. Hashimoto, and H. Inoue, 2008. A preparation zone for volcanic explosions beneath Nakadake crater, Aso volcano, as inferred from magnetotelluric surveys, Journal of Volcanology and Geothermal Research, 178(1): 32-45.   DOI
19 Korea Ocean Satellite Center (KOSC), 2015. Data Access, http://kosc.kiost.ac.kr/, Accessed on Oct. 11, 2018.
20 Krotkov, N.A., O. Torres, C. Seftor, A.J. Krueger, A. Kortinski, W.I. Rose, G.J.S. Bluth, D. Schneider, and S.J. Schaefer, 1999. Comparison of TOMS and AVHRR vocanic ash retrievals from the August 1992 eruption of Mt.Spurr, Geophysical Research Letters, 26(4): 455-458.   DOI
21 Miller, T.P. and T.J. Casadevall, 2000. Volcanic Ash Hazards to Aviation, In: Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer, H., Stix, J. (Eds.), Encyclopedia of Volcanoes, Academic Press, San Diego, USA, pp. 915-930.
22 Kusetogullari, H. and A. Yavariabdi, 2018. Unsupervised Change Detection in Landsat Images with Atmospheric Artifacts: A Fuzzy Multiobjective Approach, Mathematical Problems in Engineering, 2018: 7274141.
23 Lee, S. K., G. H. Ryu, E. H. Hwang, J. K. Choi, and C. W. Lee, 2014. Predicting the extent of the volcanic ash dispersion using GOCI image and HYSPLIT model-A case study of the 17 Sep, 2013 eruption in SAKURAJIMA volcano, Korean Journal of Remote Sensing, 30(2): 303-314 (in Korean with English abstract).   DOI
24 Leedham, G., C. Yan, K. Takru, J. H. N. Tan, and L. Mian, 2003. Comparison of some thresholding algorithms for text/background segmentation in difficult document images, Proc. of 2003 The 7th International Conference on Document Analysis and Recognition (ICDAR'03), Edinburgh, Scotland, Aug. 3-6, vol. 2, pp. 589-864.
25 Lefevre, S. and J. Weber, 2007. Automatic building extraction in VHR images using advanced morphological operators, Proc. of IEEE/ISPRS Joint Workshop Remote Sensing and Data Fusion over Urban Areas, Paris, Apr. 11-13, pp. 1-5.
26 Lv, Z., Y. Hu, H. Zhong, J. Wu, B. Li, and H. Zhao, 2010. Parallel K-means clustering of remote sensing images based on MapReduce, Proc. of International Conference on Web Information Systems and Mining (WISM '10), Berlin, Heidelberg, Oct. 23-24, pp. 162-170.
27 Nobile, A., S. Pepe, J. Ruch, D. Trippanera, F. Casu, R. Castaldo, P. Tizzani, Y. Aoki, N. Geshi, V. Acocella, E. Sansosti, V. Siniscalchi, S. Borgstrom, and S. Zoffoli, 2014. Caldera deformation in Kyushu Island (SW Japan) through InSAR data, Proc. of European Geosciences Union (EGU) General Assembly 2014, Vienna, Apr. 27-May 2, vol. 16.