• Title/Summary/Keyword: 피로수명비

Search Result 205, Processing Time 0.027 seconds

Evaluation of Fatigue Characteristics of Rubber for Tire Using Strain Energy Density (변형률에너지밀도를 이용한 타이어용 고무의 피로 특성 평가)

  • Ahn, Sang-Soo;Kim, Seong-Rae;Park, Han-Seok;Kang, Yong-Gu;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1163-1169
    • /
    • 2012
  • Rubber, a hyperelastic material, is the main material used in tires. During the operation of a car, the tire receives various types of loads. The accumulation of strain energy due to such loads induces tire failure. Generally, because rubber materials used for tires have stress softening characteristics, unlike metals, test methods used for metals cannot be applied to rubber. Therefore, in this study, for the evaluation of the fatigue properties of two types of specimens that have different material components, a tensile test and a fatigue test according to the extended strain range dissimilar to ASTM D4482 are performed, and fatigue life equations are proposed based on the test results.

An Effect of TIG Dressing on Fatigue Characteristics of Non Load-Carrying Fillet Welded Joints (TIG처리에 따른 하중비전달형 필렛용접부의 피로특성)

  • Jung, Young Hwa;Kyung, Kab Soo;Hong, Sung Wook;Kim, Ik Gyeom;Nam, Wang Hyone
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.617-628
    • /
    • 2000
  • In this study, the 4-point bending test has been performed in order to estimate the effect of TIG-dressing on fatigue strength and fatigue characteristics quantitatively for non load-carrying fillet welded joints subjected to pure bending. As a result of fatigue tests, fatigue strength of as-welded specimens has been satisfied the grade of fatigue strength prescribed in specifications of domestics and AASHTO & JSSC, and fatigue strength at $2{\times}106cycles$ of TIG-dressing specimens has been increased compared with as-welded specimens. As the result of beachmark tests, fatigue cracks have been occurred at several points, where the radius of curvature and flank angle in the weld bead toes are low, and grown as semi-elliptical cracks, then approached to fracture. As a result of finite element analysis, stress concentration factor in weld bead toes has been closely related to the flank angel and radius of curvature, and between these, the radius of curvature has more largely affected in stress concentration factor than flank angle. As a result of fracture mechanics approaches, the crack correction factor of test specimens has been largely affected on stress gradient correction factor in case a/t is below 0.4. From the relations between stress intensity factor range estimated from FEM analysis and fatigue crack growth rate, fatigue life has been correctly calculated.

  • PDF

Improvement of Fatigue Model of Concrete Pavement Slabs Using Environmental Loading (환경하중을 이용하는 콘크리트 포장 슬래브 피로모형의 개선)

  • Park, Joo-Young;Lim, Jin-Sun;Kim, Sang-Ho;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.103-115
    • /
    • 2011
  • Concrete slab curls and warps due to the uneven distribution of temperature and moisture and as the result, internal stress develops within the slab. Therefore, environmental loads must be considered in addition to the traffic loads to predict the lifespan of the concrete pavement more accurately. The strength of the concrete slab is gradually decreases to a certain level at which fatigue cracking is generated by the repetitive traffic and environmental loadings. In this study, a new fatigue regression model was developed based on the results from previously performed studies. To verify the model, another laboratory flexural fatigue test program which was not used in the model development, was conducted and compared with the predictions of other existing models. Each fatigue model was applied to analysis logic of cumulative fatigue damage of concrete pavement developed in the study. The sensitivity of cumulative fatigue damage calculated by each model was analyzed for the design factors such as slab thickness, joint spacing, complex modulus of subgrade reaction and the load transfer at joints. As the result, the model developed in this study could reflect environmental loading more reasonably by improving other existing models which consider R, minimum/maximum stress ratio.

The Effect of Weld heat input energy to mechanical properties of Titanium alloys (용접 입열량에 따른 티타늄 합금의 기계적 성질 평가에 대한 연구)

  • Yi, Hui-Jun;Lee, Jung-Soo;Yang, Hae-Jin;Oh, Myung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.476-479
    • /
    • 2011
  • 티타늄 합금은 높은 내부식성, 우수한 피로 수명과 무게비에 비해 높은 강도를 가진다는 우수성으로 인해 항공기 부품과 화학 공업 분야등에 다양하게 사용되고 있다. 이번 연구에서는 Ti-3Al-2.5V 합금 TIG 용접부에 대하여 용접부 인성과 기계적 성질에 영향을 주는 가장 중요한 인자인 용접 입열에 대한 영향을 평가하고자 하였다. 이에 입열조건에 대한 용접부에 대한 강도, 충격 인성과 노치 인성을 평가하였으며 적정 입열 조건에서 강도와 인성이 우수한 용접부를 얻을 수 있다는 것을 확인하였다.

  • PDF

The Retardation Behaviors due to a Single Overload and High-Low Block Loads, and Retardation Model in 7075-T73 Aluminum Alloy (7075-T73 알루미늄 합금의 단일과대 및 고-저블럭하중에 의한 지연거동과 수명예측 모델)

  • 김정규;송달호;박병훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1605-1614
    • /
    • 1992
  • The effects of % overload (% O.L), baseline stress intensity factor range (.DELTA. $K_{b}$) and dimension-less crack depth (a/W) are examined for the retardation behaviors after a single overload and high-low block loads in 7075-T73 aluminum alloy. And wheeler model, which is one of the fatigue life prediction models, is modified to predict retardation life using these test results. The retardation cycles( $N_{d}$) increased with a decrease in a/W and an increase in % O.L. and (.DELTA. $K_{b}$) These effects are more severe after high-low block loads than single overload. In the case of single overload, the main mechanisms of the retardation are the crack closure and the relaxation of K due to crack branching. But in the case of high-low block loads, that of the main mechanism is the crack closure caused by the accumulated compressive residual stree at the crack tip, which is related with the contact of fracture surfaces. Test results were multiple regression analyzed and got regressed shaping correction factors, (n)$_{REG}$, as function of %O.L., a/W and (.DELTA. $K_{b}$) Wheeler model is modified by using these (n)$_{REG}$. The number of delay cycles calculated by modified Wheeler model were in good agreement with the test results of this study.y.udy.y.y.y.

Nonlinear Effects on the Cable Dynamic Behaviour (케이블의 동적거동에 미치는 비선형 영향)

  • Hyun-Kyoung,Shin
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.11-16
    • /
    • 1990
  • The effects on the dynamic behaviour of the geometric nonlinearity and large dynamic tensile forces occurring in hostile sea environments must be investigated for assessing extreme tensions and fatigue life expectancy of cable. In this paper, the combined effects on the cable dynamic responses are shown through comparisons between numerical solutions to the cable dynamic equations with geometric nonlinearity and large tensile force terms as well as nonlinear drag term and those to the cable equations with only nonlinear drag term. It is found that, in steady state, the cambined effects increase the maximum dynamic tension and reduce the magnitude of the minimum of the dynamic tension at the middle of the cable. This decrease together with the increase of the maximum dynamic tension, cause the average tension to become higher and, therefore, it may deteriorate the cable fatigue life.

  • PDF

Effect of Inner Shot Peening Process for Tubular Stabilizer Bars (차량용 중공 스테빌라이저바의 내측 쇼트피닝 효과)

  • Seo, Yu Won;Sur, Jin Won;Lee, Won Ki;Kim, Jin Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1119-1124
    • /
    • 2017
  • The stabilizer bar mounted on the vehicle underbody makes for a more comfortable ride by holding the vehicle itself when the vehicle is cornering. Stabilizer bars are available in two types: solid and tube. To lighten the weight of the vehicle, and owing to weight reduction requirements, tubular stabilizer bars are increasingly being used. Tubular stabilizer bars can be fabricated to be over 34% lighter than solid bars, but the lifetime of the product tends to decrease rapidly as the weight ratio increases. However, the durability can be improved by utilizing high-strength and high-hardness materials for the stabilizer bar or by improving the shot peening method.

Fatigue Limit of Copper Film (동 박막의 피로한도)

  • Huh, Yong-Hak;Kim, Dong-Jin;Lee, Hae-Moo;Hong, Sung-Gu;Park, Jun-Hyub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1158-1162
    • /
    • 2009
  • Fatigue limit of the copper film coated by Sn was estimated using Goodman diagram and Gerber diagram. To obtain the high cycle fatigue life curve, S-N curve, of the film, the high cycle fatigue test was carried out by applying the constant amplitude load to the film specimen with three different stress ratio of 0.05, 0.3 and 0.5 and the frequency of 40 Hz at room temperature in air. The free-standing film specimen 15.26${\mu}m$ thick was fabricated by etching process. The fatigue limits and S-N curves at the respective stress ratios were determined from the experimental works. It was shown that the S-N curves were dependent on the stress ratio and the fatigue limit was increased with decreasing the stress ratio. The dependency of the fatigue behavior was presented in empirical relationship. Using these relationships, the fatigue limit was predicted.

Design and evaluation of renovated NSI T/O PC sleeper (개량형 NSI 분기기용 PC침목 설계와 성능평가)

  • Park, Choon-Bok;Kwon, Ho-Jin;Lee, Young-Sou;Yoon, Byung-Hyun;Shin, Won-Sun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1129-1137
    • /
    • 2007
  • 50kg NSI PCT(Prestress Concrete Timber, sleeper) is developed for the purpose of low maintenance cost, Extend life cycle, Track stability, Friendly Environment, Good running quality. In this study, as a part of research which is to make renovated NSI turnout, the main objective of this study is the optimization of PC sleeper's section, the number of PS tension wire. For this purpose, the finite element analysis was conducted to evaluate the serviceability and the safety of NSI PC sleeper developed.

  • PDF

The Vibration Characteristic and Fatigue Life Estimation of a Small-scaled Hingeless Hub System with Composite Rectangular Blades (복합재료 기준형 블레이드를 장착한 축소 힌지없는 허브시스템의 진동특성과 피로수명 예측)

  • Song, Keun-Woong;Kim, Jun-Ho;Kim, Duck-Kwan;Joo, Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.310-315
    • /
    • 2003
  • This paper described that rotating test and fatigue test of a small-scale hingeless hub system with composite rectangular blades. Generally Rotating stability and fatigue test technique is one of Key-technology on test and evaluation for helicopter rotor system Rotating test of hingeless rotor system was achieved by means of rotor vibration characteristic and aeroelastic stability test GSRTS, equipped with hydraulic actuator and 6-component rotating balance was used to test hingeless rotor system especially for an observation of blade motion including flawing, lagging and feathering. Rotating test was done in hover and forward flight condition. Small-scaled blade fatigue test condition was determined by blade load analysis with the reference table of composite materials(S-N curve). Fatigue test bench was developed for the estimation of blade fatigue life, and tested its characteristic.

  • PDF