• Title/Summary/Keyword: 표면초음파

Search Result 534, Processing Time 0.03 seconds

Evaluation of Slope Stability and Deterioration Degree for Bangudae Petroglyphs in Ulsan, Korea (울산 반구대암각화의 손상도 및 사면안정성 평가)

  • Lee, Chan-Hee;Chun, Yu-Gun;Jo, Young-Hoon;Suh, Man-Cheol
    • Journal of Conservation Science
    • /
    • v.28 no.2
    • /
    • pp.153-164
    • /
    • 2012
  • The major petroglyphs of Bangudae site were composed mainly of hornfelsed shale. Surface of the rock was formed weathering layer (average porosity 25%) that discriminated mineral and chemical composition against fresh rock (average porosity 0.4%). The lost area of major petroglyphs in the past up images carved to the present was calculated about 23.8%. And occurrence area of exfoliation indicated 1.2% of the whole petroglyphs. As a result of the chromaticity analysis, color of the major petroglyphs was changed brighter and yellower than fresh rock by chemical and biological weathering factors. Average ultrasonic velocity of petroglyphs was measured 2,865m/s. This result indicated that ultrasonic velocity decreased especially bottom of petroglyphs than measured result in 2003 year. The results of the evaluation for slope stability, it identified the possibility of toppling, planar and wedge failure in host rock. The 3D image analysis and modeling data of the cavern obtained for structural reinforcement.

Immunological properties of the 30 kDa antigen of Toxoplasma gondii (단클론 항체를 이용하여 정제한 톡소포자충 30 kDa 항원의 면역학적 특성)

  • Lee, Yeong-Hwa;No, Tae-Jin;Sin, Dae-Hwan
    • Parasites, Hosts and Diseases
    • /
    • v.35 no.1
    • /
    • pp.55-62
    • /
    • 1997
  • The molecular weight 30 kDa membrane protein of Toxoplusma Sondii (Toxoplasma 30 kDa) apparently conserved in most strains of T. gondii and sera of infected hosts. The present study aimed to elucidate Toxoplasmc 30 kDa as a useful diagnotic antigen for serodiagnisis of toxoplasmosis by ELISA and for induction of protective immunity. Murine spleen cells immunized with the membrane antigen of T. gondii were fused with mouse Sp2/0-Ag 14 myeloma cells. Out of 8 clones selected, five were IgG2b, the others belonged to IgG 1 and IgG2a. The 30 kDa antigen was distributed mainly on the surface membrane of tachyzoites by indirect fluorescence method. Murine peritoneal macrophages which were activated by 30 kDa antigen produced more amounts of NO2 compared with crude antigen-treated group, however there were no significant differences in toxoplamacidal activity between the two groups. Higher specificity of Toxoplosma 30 kDa antigen was recognized for serodiagnosis of toxoplasmosis than the crude antigen. From these results, ToxopLasmo 30 kDa antigen enhances the cytotoxic effect of macrophages as well as a more reliable means for the serodiagnosis of toxoplasmosis by ELISA. Key words: Toxoplosma gondii, 30 kDa antigen (p30), mouse, serodiagnosis, macrophage, cytotoxicity.

  • PDF

Effects of Plant Growth Regulators on In Vitro Germination and Organ Formation of Wild Angelica gigas N. (야생 참당귀(Angelica gigas N.)의 기내발아 및 기관유도에 미치는 PGRs의 영향)

  • Lee, Su-Gwang;Cho, Won-Woo;Lee, Song-Hee;Park, Kwang-Woo;Choi, Kyung;Kang, Ho-Duck
    • Korean Journal of Plant Resources
    • /
    • v.25 no.4
    • /
    • pp.456-464
    • /
    • 2012
  • This study was conducted to establish the in vitro optimal condition for seed germination and organogenesis of wild Angelica gigas. The experiment was evaluated the effects of $GA_3$ for pre-treatment with different periods of time (0h, 24h, 48h, 72h) and followed the treatment of seeds by control, scarification and methanol-heating method. As a result, the highest rates (15%) of seed germination was shown under the treatment without soaking of $GA_3$ and methanol-heating treatment. The seed germination was highly increased 60% under the condition of treatment on ultrasonic waves (frequency 80 KHz) with methanol-heating treatment including 0.1 mg/L $GA_3$. The highest callus induction rate was obtained from in vitro germinated stem, root and hypocotyl on the MS medium with 1.0 mg/L NAA and 0.5 mg/L BA. The highest percentages of shooting (50%) and rooting (85%) induction were observed in hypocotyl and root cultured on PGRs free medium and 0.1 mg/L NAA, respectively. In addition, somatic embryogenesis was observed from stem (1.0 mg/L 2,4-D) and hypocotyl (0.1 mg/L NAA).

Size and Dispersion Characteristics of Silver Nanoparticles Prepared Using Liquid Phase Reduction Method (액상환원법으로 제조한 은 나노입자의 크기와 분산특성)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.10-16
    • /
    • 2016
  • This work investigates the size and dispersion characteristics of silver nanoparticles synthesized by a liquid phase reduction method using PAA. The experimental variables were the molecular weight and doses of the PAA, reducing agent, dispersant, and organic solvent (ethanol-acetone). UV-visible spectrophotometer results confirm the formation of the silver particles, and SEM indicates size in the nanometer range. As the ultrasonication time increases, there is a tendency toward smaller agglomerates of nanoparticles. The agglomerates were dispersed into 1-5 agglomerates of particles by ultrasonication for 3 hours or more. Relatively spherical nanoparticles were produced with a completely homogeneous dispersion and size of 49.56-85.75 nm by ultrasonication using BYK-192, a dispersant containing copolymer with a pigment affinic group. The average size of the silver nanoparticles was increased to 36.82, 50.66, and 56.06 nm with increasing molecular weight of PAA. Also, the size of the nanoparticles increased with the capping of PAA on the surfaces of the nanoparticles when increasing the amount of PAA. The addition of hydrazine as a reducing agent produced relatively small particles because many nuclei were created by the reduction reaction. The ethanol-acetone solvent helped with the regular arrangement of the silver nanoparticles.

Scientific Investigation and Conservation Treatment of the Three-story Stone Pagoda at Jangha-ri, Buyeo (부여 장하리 삼층석탑의 과학적 조사 및 보존처리)

  • Kim, Joohyung;Han, Minsu
    • Conservation Science in Museum
    • /
    • v.27
    • /
    • pp.103-124
    • /
    • 2022
  • This study examined the properties of the materials used in the three-story pagoda at Jangha-ri, Buyeo. It was performed in order to identify the objective condition of the pagoda and establish an appropriate plan for the conservation treatment of the pagoda. According to the study, the average total magnetic susceptibility was 3.71 (10-3 SI unit), and at least four types of granite with different origins were likely used in the production of the pagoda. The ultrasonic velocity averaged 1,519m/s, and the coefficient of weathering showed an average of grade 4. The thermal gradient between the cement (restoration materials) and original materials was identified through thermal imaging. In some areas, the cement restoration materials required replacement with new stone materials with properties similar to those of the original stone materials. Taking into account these results, a map of weathering damage was prepared and appropriate conservation treatment plans were established based on the findings of previous studies. Since the pagoda had suffered severe biological damage and discoloration, surface contaminants were removed through wet cleaning with distilled water and a brush. The exfoliated areas were reinforced on the site by mixing epoxy resin with powdered stone with the same properties as the original stone materials of the pagoda.

Rock Mass Stability of the Buddha Statue on a Rock Cliff using Fracture Characteristics and Geological Face-Mapping (마애불 암반의 단열특성과 지질맵핑을 이용한 안정성 해석)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.539-544
    • /
    • 2023
  • The subject of this study is the Maae Buddha statue in granodiorite of the Mesozoic Cretaceous period, which is concerned about stability as a standing stone cultural property located in ◯◯-dong, Gyeongsangbuk-do. For stability analysis, three-dimensional face mapping, geological properties of joints, three-dimensional scanning, ultrasonic velocity, polarization microscopy, electron microscopy analysis and XRD analysis were performed. In addition, the safety factor of the Maaebul was calculated by analyzing the damage status investigation, stereographic projection analysis, rock classification, and limit equilibrium analysis. The types and scales of damage and possible collapse by section depend on the degree of weathering of the rock and the orientation and characteristics of the joints, but wedge-failure and toppling-failure are expected to be small-scale. The safety factor of Maaebul in dry and wet conditions is less than 1.2, so stability is concerned. The types of damage were mainly observed, such as exfoliation, cracking, granular decomposition, and vegetation growth. The Maaebul rock is granodiorite, and the surface discoloration materials are K, Fe, and Mg. The 4 sets of joints are developed, J1 is tensile joint and the others are shear joint. The uniaxial compressive strength estimated by ultrasonic exploration is 514kgf/cm2, which corresponds to most soft rocks and some weathered rocks. Rock classification(RMR) is estimated to be grade 5, very poor rock mass. These technique along with the existing methods of safety diagnosis of cultural properties are expected to be a reasonable tool for objective interpretation and stability review of stone cultural properties.

17O Solid-State NMR Study of the Effect of Organic Ligands on Atomic Structure of Amorphous Silica Gel: Implications for Surface Structure of Silica and Its Dehydration Processes in Earth's Crust (유기 리간드와 비정질 실리카겔의 상호 작용에 대한 17O 고상핵자기공명 분광분석 연구: 실리카 표면 구조 및 지각의 탈수반응에 대한 의의)

  • Kim, Hyun Na;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.271-282
    • /
    • 2012
  • We explore the effect of removal of organic ligand on the atomic configurations around oxygen in hydroxyl groups in amorphous silica gel (synthesized through hydrolysis of $SiCl_4$ in diethyl-ether) using high resolution $^{17}O$ solid state NMR spectroscopy. $^1H$ and $^{29}Si$ MAS NMR spectra for amorphous silica gel showed diverse hydrogen environments including water, hydroxyl groups (e.g., hydrogen bonded silanol, isolated silanol), and organic ligands (e.g., alkyl chain) that may interact with surface hydroxyls in the amorphous silica gel, for instance, forming silica-organic ligand complex (e.g., Si-$O{\cdots}R$). These physically and chemically adsorbed organic ligands were partly removed by ultrasonic cleaning under ethanol and distilled water for 1 hour. Whereas $^{17}O$ MAS NMR spectra with short pulse length ($0.175{\mu}s$) at 9.4 T and 14.1 T for as-synthesized amorphous silica gel showed the unresolved peak for Si-O-Si and Si-OH structures, the $^{17}O$ MAS NMR spectra with long pulse length ($2{\mu}s$) showed the additional peak at ~0 ppm. The peak at ~0 ppm may be due to Si-OH structure with very fast relaxation rate as coupled to liquid water molecules or organic ligands on the surface of amorphous silica gel. The observation of the peak at ~0 ppm in $^{17}O$ MAS NMR spectra for amorphous silica gel became more significant as the organic ligands were removed. These results indicate that the organic ligands on the surface of amorphous silica gel interact with oxygen atoms in Si-OH and provide the information about atomic structure of silanol and siloxane in amorphous silica gel. The current results could enhance the understanding of dehydration mechanism of diverse silicates, which is known as atomic scale origins of intermediate depth (approximately, 70~300 km) earthquakes in subduction zone.

Study on the Drag Reduction of 2-D Dimpled-Plates (딤플을 적용한 평판에 대한 항력 감소 연구)

  • Paik, Bu-Geun;Pyun, Young-Sik;Kim, Jun-Hyung;Kim, Kyung-Youl;Kim, Ki-Sup;Jung, Chul-Min;Kim, Chan-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.333-339
    • /
    • 2012
  • The main objective of the present study is to investigate the roles of the micro-dimpled surface on the drag reduction. To investigate the effectiveness of the micro-dimpled surface, the flat plates are prepared. The micro-size dimples are directly carved on the metal surface by ultrasonic nano-crystal surface modification (UNSM) method. Momentum of the main flow is increased by the dimple patterns within the turbulent boundary layer (TBL), however, there is no significant change in the turbulence intensity in the TBL. The influence of dimple patterns is examined through the flow field survey near the flat plate trailing edge in terms of the profile drag. The wake flow velocities in the flat plate are measured by PIV technique. The maximum drag reduction rate is 4.6% at the Reynolds number of $10^6{\sim}10^7$. The dimples tend to increase the drag reduction rate consistently even at high Reynolds number range.

Study about the In-situ Synthesis and Structure Control of Multi-walled Carbon Nanotubes and their Nanocomposites (다중벽 탄소나노튜브와 다양한 나노입자 복합체의 In-situ 합성법개발 및 구조제어연구)

  • Park, Ho Seok
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.729-732
    • /
    • 2012
  • Herein we report the in-situ synthesis and direct decoration of chalcogenide naoparticles (NPs) onto multiwalled carbon nanotubes (MWCNTs) through an ionic liquid-assisted sonochemical method (ILASM). The as-obtained MWCNT/$BMimBF_4$/CdTe, MWCNT/$BMimBF_4$/ZnTe and MWCNT/$BMimBF_4$/ZnSe nanocomposites were characterized by TEM images and EDS spectra. In particular, the morphologies of nanocomposites such as bump-like, rough, and smooth core-shell structures were strongly influenced by the type of precursors and the interactions with MWCNT. This synthetic strategy opens a new way to directly synthesize and deposit semiconducting NPs (s-NPs) onto CNTs, which consist of binary components obtained from two precursors with different reaction rates.

Effect of Nanocellulose on the Mechanical and Self-shrinkage Properties of Cement Composites (나노셀룰로오스가 시멘트복합체의 역학적 특성 및 자기수축 특성에 미치는 영향)

  • Kim, Sun-Woo;Yoon, Byung-Tae
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.380-385
    • /
    • 2016
  • Nanocelluloses, mainly cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC, i.e., defect-free, rod-like crystalline residues after acid hydrolysis of fibers), have been the subject of recent interest. Due to the presence of hydroxyl groups on the surface of nanocelluloses, their surfaces are reactive, making them suitable candidates for reinforcing materials for manufacturing polymer composites. In this study, CNF was used as a reinforcing material for manufacturing cement composites. CNF was prepared by TEMPO (2,2,6,6,-tetramethyl piperidine-1-oxyl radical) oxidation procedure combined with extensive homogenization and ultrasonication. Transmission electron microscopy (TEM) analysis of the suspension showed the width of CNF between 10 and 15 nm. The compressive strength of cement composites containing 0.5% CNF was comparable to that of conventional cement composites. On the other hand, the tensile and flexural strength were improved by 49.7% and 38.8%, respectively, compared to those of conventional cement composites. Also, at an ambient condition, the degree of self-shrinkage reduction reached to 18.9% in one day, followed by 5.9% in 28 days after molding.