DOI QR코드

DOI QR Code

17O Solid-State NMR Study of the Effect of Organic Ligands on Atomic Structure of Amorphous Silica Gel: Implications for Surface Structure of Silica and Its Dehydration Processes in Earth's Crust

유기 리간드와 비정질 실리카겔의 상호 작용에 대한 17O 고상핵자기공명 분광분석 연구: 실리카 표면 구조 및 지각의 탈수반응에 대한 의의

  • Kim, Hyun Na (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Sung Keun (School of Earth and Environmental Sciences, Seoul National University)
  • 김현나 (서울대학교 지구환경과학부) ;
  • 이성근 (서울대학교 지구환경과학부)
  • Received : 2012.12.14
  • Accepted : 2012.12.23
  • Published : 2012.12.31

Abstract

We explore the effect of removal of organic ligand on the atomic configurations around oxygen in hydroxyl groups in amorphous silica gel (synthesized through hydrolysis of $SiCl_4$ in diethyl-ether) using high resolution $^{17}O$ solid state NMR spectroscopy. $^1H$ and $^{29}Si$ MAS NMR spectra for amorphous silica gel showed diverse hydrogen environments including water, hydroxyl groups (e.g., hydrogen bonded silanol, isolated silanol), and organic ligands (e.g., alkyl chain) that may interact with surface hydroxyls in the amorphous silica gel, for instance, forming silica-organic ligand complex (e.g., Si-$O{\cdots}R$). These physically and chemically adsorbed organic ligands were partly removed by ultrasonic cleaning under ethanol and distilled water for 1 hour. Whereas $^{17}O$ MAS NMR spectra with short pulse length ($0.175{\mu}s$) at 9.4 T and 14.1 T for as-synthesized amorphous silica gel showed the unresolved peak for Si-O-Si and Si-OH structures, the $^{17}O$ MAS NMR spectra with long pulse length ($2{\mu}s$) showed the additional peak at ~0 ppm. The peak at ~0 ppm may be due to Si-OH structure with very fast relaxation rate as coupled to liquid water molecules or organic ligands on the surface of amorphous silica gel. The observation of the peak at ~0 ppm in $^{17}O$ MAS NMR spectra for amorphous silica gel became more significant as the organic ligands were removed. These results indicate that the organic ligands on the surface of amorphous silica gel interact with oxygen atoms in Si-OH and provide the information about atomic structure of silanol and siloxane in amorphous silica gel. The current results could enhance the understanding of dehydration mechanism of diverse silicates, which is known as atomic scale origins of intermediate depth (approximately, 70~300 km) earthquakes in subduction zone.

비정질 실리카겔은 Si와 O로 이루어진 가장 간단한 화합물로서, 표면에 다양한 구조의 물과 수산기, 그리고 합성과정에서 형성된 유기 리간드(ligand)를 함유하고 있어, 지권, 수권, 그리고 생물권의 상호작용을 이해하는 모델 시스템으로서 의미를 갖는다. 본 연구에서는 $^{17}O$ NMR 분광분석을 통해 비정질 실리카겔의 Si-O-Si와 Si-OH 산소 원자환경의 차이를 규명하고자 하였다. 이를 위해 $SiCl_4$의 수화반응을 통해 $^{17}O$이 집적된 비정질 실리카겔을 합성하였다. $^1H$$^{29}Si$ NMR 분광분석 결과, 비정질 실리카겔 표면에는 다양한 수소결합 세기를 가진 물과 수산기 이외에, Si-$O{\cdots}R$ 형태의 유기 리간드가 존재함을 확인하였다. 이와 같은 유기 리간드는 에탄올 또는 증류수를 이용해 비정질 실리카겔을 초음파 세척함으로써 상당부분 제거 가능하다. $^{17}O$ NMR 분광분석 결과, 짧은 펄스 길이($0.175{\mu}s$)를 이용한 $^{17}O$ NMR 스펙트럼에서 Si-O-Si와 Si-OH 산소원자 환경이 거의 구분되지 않고 나타나는 반면, 특정 실험조건($2{\mu}s$ 펄스길이)의 $^{17}O$ NMR 스펙트럼에서는 약 0 ppm에서 빠른 동역학적 특성을 가지는 Si-OH로 추정되는 피크가 관찰되었다. 이 피크는 비정질 실리카겔 표면의 유기 리간드가 제거됨에 따라 더 뚜렷하게 관찰되며, 이는 유기 리간드와 비정질 실리카의 산소원자 사이의 상호작용이 존재함을 지시한다. 이와 같은 상호작용은 비정질 실리카겔 표면의 수산기의 원자구조에 대한 정보를 제공하며, 이를 통해 규산염 지구물질의 탈수반응 기작에 대한 이해를 고양시킬 수 있다. 따라서 궁극적으로 지구물질의 탈수반응에 기인하여 일어나는 섭입대의 중간깊이(약 70~300 km)에서 일어나는 지진의 미시적인 원인에 대한 실마리를 제시할 것으로 기대된다.

Keywords

References

  1. Bach, H. (1997) Thin films on glass. Springer.
  2. Bronnimann, C.E., Zeigler, R.C., and Maciel, G.E. (1988) Proton NMR-study of dehydration of the silica- gel surface. Journal of the American Chemical Society, 110, 2023-2026. https://doi.org/10.1021/ja00215a001
  3. Camus, L., Goletto, V., Maquet, J., Gervais, C., Bonhomme, C., and Babonneau, F. (2003) $^{1}H$ MASNMR at high spinning rate: An interesting characterization tool for hybrid materials. Journal of. Sol-Gel Science and Technology, 26, 311-314. https://doi.org/10.1023/A:1020732022863
  4. Cannas, C., Casu, M., Musinu, A., and Piccaluga, G. (2004) $^{29}Si$ CPMAS NMR and near-IR study of solgel microporous silica with tunable surface area. Journal of Non-Crystalline Solids, 351, 3476-3482.
  5. Cong, X.D. and Kirkpatrick, R.J. (1996) Si-29 and O-17 NMR investigation of the structure of some crystalline calcium silicate hydrates. Advanced Cement Based Materials, 3, 133-143. https://doi.org/10.1016/S1065-7355(96)90045-0
  6. Duer, M.J. (2004) Introduction to solid-state NMR spectroscopy. Blackwell publishing.
  7. Engelhardt, G. and Michel, D. (1988) High-resolution solid-state NMR of silicates and zeolites. John Wiley & Sons, 499p.
  8. Gladden, L.F., Carpenter, T.A., and Elliott, S.R. (1986) $^{29}Si$ MAS NMR studies of the spin-lattice relaxation time and bond-angle distribution in vitreous silica. Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties, 53, L81-L87.
  9. Glinka, Y.D., Lin, S.H., and Chen, Y.T. (2000) Twophoton- excited luminescence and defect formation in $SiO_{2}$ nanoparticles induced by 6.4-eV ArF laser light. Physical Review B, 62, 4733-4743. https://doi.org/10.1103/PhysRevB.62.4733
  10. Groger, C., Lutz, K., and Brunner, E. (2009) NMR studies of biomineralisation. Progress in Nuclear Magnetic Resonance Spectroscopy, 54, 54-68. https://doi.org/10.1016/j.pnmrs.2008.02.003
  11. Hacker, B.R., Peacock, S.M., Abers, G.A., and Holloway, S.D. (2003) Subduction factory - 2. Are intermediate- depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? Journal of Geophysical Research, 108(B1).
  12. Kim, H.N. and Lee, S.K. (2008) Effect of particle size on the atomic structure of amorphous silica nanoparticle: Solid-state NMR and quantum chemical calculations. Journal of the Mineralogical Society of Korea, 21, 321-329.
  13. Kim, H.N., and Lee, S.K. (Revision requesed) Atomic structure and dehydration mechanism of amorphous silica: Insights from $^{29}Si$ and $^{1}H$ solid-state MAS NMR study of $SiO_{2}$ nanoparticles.
  14. Lee, S.K., Kim, H.N., Lee, B.H., Kim, H.I., and Kim, E.J. (2010) Nature of Chemical and Topological Disorder in Borogermanate Glasses: Insights from B-11 and O-17 Solid-State NMR and Quantum Chemical Calculations. Journal of Physical Chemistry B, 114, 412-420. https://doi.org/10.1021/jp9093113
  15. Lee, S.K. and Stebbins, J.F. (2003) O atom sites in natural kaolinite and muscovite: O-17 MAS and 3QMAS NMR study. American Mineralogist, 88, 493-500. https://doi.org/10.2138/am-2003-0403
  16. Lee, S.K. and Stebbins, J.F. (2006) Disorder and the extent of polymerization in calcium silicate and aluminosilicate glasses: O-17NMR results and quantum chemical molecular orbital calculations. Geochimica et Cosmochimica Acta, 70, 4275-4286. https://doi.org/10.1016/j.gca.2006.06.1550
  17. Levitt, M.H. (2005) Spin dynamics- Basics of nuclear magnetic resonance. Jone Wiley & Sons. ltd.
  18. Liu, C.H.C. and Maciel, G.E. (1996) The fumed silica surface: A study by NMR. Journal of the American Chemical Society 118, 5103-5119. https://doi.org/10.1021/ja954120w
  19. Maekawa, H., Saito, T., and Yokokawa, T. (1998) Water in silicate glass: $^{17}O$NMR of hydrous silica, albite, and $Na_{2}Si_{4}O_{9}$ glasses. Journal of Physical Chemistry B, 102, 7523-7529. https://doi.org/10.1021/jp980662z
  20. Oglesby, J.V. and Stebbins, J.F. (2000) Si-29 CPMAS NMR investigations of silanol-group minerals and hydrous aluminosilicate glasses. American Mineralogist, 85, 722-731. https://doi.org/10.2138/am-2000-5-610
  21. Pursch, M., Brindle, R., Ellwanger, A., Sander, L.C., Bell, C.M., Handel, H., and Albert, K. (1997) Stationary interphases with extended alkyl chains: a comparative study on chain order by solid-state NMR spectroscopy. Solid State Nuclear Magnetic Resonance, 9, 191-201. https://doi.org/10.1016/S0926-2040(97)00058-1
  22. Trebosc, J., Wiench, J.W., Huh, S., Lin, V.S.Y., and Pruski, M. (2005) Solid-state NMR study of MCM- 41-type mesoporous silica nanoparticles. Journal of the American Chemical Society, 127, 3057-3068. https://doi.org/10.1021/ja043567e
  23. van Eck, E.R.H., Smith, M.E., and Kohn, S.C. (1999) Observation of hydroxyl groups by O-17 solid-state multiple quantum MAS NMR in sol-gel-produced silica. Solid State Nuclear Magnetic Resonance, 15, 181-188. https://doi.org/10.1016/S0926-2040(99)00055-7
  24. Walter, T.H., Turner, G.L., and Oldfield, E. (1988) $^{17}O$cross-polarization NMR spectroscopy of inorgrnic solids. Journal of Magnetic Resonance, 76, 106-120.
  25. Xue, X. and Kanzaki, M. (1998) Correlations between Si-29, O-17, and H-1 NMR properties and local structures in silicates: an ab initio calculation. Physics and Chemistry of Minerals, 26, 14-30. https://doi.org/10.1007/s002690050157
  26. Yuan, P., Wu, D.Q., He, H.P., and Lin, Z.Y. (2004) The hydroxyl species and acid sites on diatomite surface: a combined IR and Raman study. Applied Surface Science, 227, 30-39. https://doi.org/10.1016/j.apsusc.2003.10.031