DOI QR코드

DOI QR Code

Study about the In-situ Synthesis and Structure Control of Multi-walled Carbon Nanotubes and their Nanocomposites

다중벽 탄소나노튜브와 다양한 나노입자 복합체의 In-situ 합성법개발 및 구조제어연구

  • Park, Ho Seok (Department of Chemical Engineering, College of Engineering)
  • 박호석 (경희대학교 화학공학과)
  • Received : 2012.01.20
  • Accepted : 2012.03.06
  • Published : 2012.08.01

Abstract

Herein we report the in-situ synthesis and direct decoration of chalcogenide naoparticles (NPs) onto multiwalled carbon nanotubes (MWCNTs) through an ionic liquid-assisted sonochemical method (ILASM). The as-obtained MWCNT/$BMimBF_4$/CdTe, MWCNT/$BMimBF_4$/ZnTe and MWCNT/$BMimBF_4$/ZnSe nanocomposites were characterized by TEM images and EDS spectra. In particular, the morphologies of nanocomposites such as bump-like, rough, and smooth core-shell structures were strongly influenced by the type of precursors and the interactions with MWCNT. This synthetic strategy opens a new way to directly synthesize and deposit semiconducting NPs (s-NPs) onto CNTs, which consist of binary components obtained from two precursors with different reaction rates.

본 논문에서 이온성액체를 이용한 초음파화학을 통해서 칼코젠 나노입자를 in-situ로 합성하여서 다중벽 탄소나노튜브(MWCNT) 위에 도포하였다. 1-Butyl-3-methylimidazolium tetrafluoroborate ($BMimBF_4$) 이온성액체를 이용해서 MWCNT의 표면을 기능화하였다. 합성된 MWCNT/$BMimBF_4$/CdTe, MWCNT/$BMimBF_4$/ZnTe, MWCNT/$BMimBF_4$/ZnSe 나노복합체를 TEM과 EDS를 이용해서 분석하였다. 특히, MWCNT/$BMimBF_4$/CdTe, MWCNT/$BMimBF_4$/ZnTe, and MWCNT/$BMimBF_4$/ZnSe 나노복합체는 각각 요철과 같거나, 거칠거나 부드러운 코어-쉘 형태와 같은 특이한 구조를 보여주었다. 본 연구는 반응속도가 다른 전구체로부터 얻어진 이성분 반도체 나노입자를 합성과 동시에 탄소나노튜브에 도포할 수 있는 새로운 합성법을 제시한다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Wildgoose, G. G., Banks, C. E. and Compton, R. G., "Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications," Small, 2, 182-193(2006). https://doi.org/10.1002/smll.200500324
  2. Eder, D., "Carbon Nanotube-Inorganic Hybrids," Chem. Rev., 110, 1348-1385(2010). https://doi.org/10.1021/cr800433k
  3. Park, H. S., Choi, B. G., Yang, S. H., Shin, W. H., Kang, J. K., Jung, D. and Hong, W. H., "Ionic Liquid-Assisted Sonochemical Synthesis of Carbon Nanotube-Based Nanohybrids: Control in the Structures and Interfacial Characteristics," Small, 5, 1754-1760(2009). https://doi.org/10.1002/smll.200900128
  4. Park, H. S., Kim, J. S., Choi, B. G., Jo, S. M., Kim, D. Y., Hong, W. H. and Jang, S. Y., "Sonochemical Hybridization of Carbon Nanotubes with Gold Nanoparticles for the Production of Flexible Transparent Conducing Films," Carbon, 48, 1325-1330(2010). https://doi.org/10.1016/j.carbon.2009.11.054
  5. Peng, X., Chen, J., Misewich, J. A. and Wong, S. S., "Carbon nanotube-nanocrystal Heterostructures," Chem. Soc. Rev., 38, 1076-1098(2009). https://doi.org/10.1039/b811424m
  6. Cho, N., Choudhury, K. R., Thapa, R. B., Sahoo, Y., Ohulchanskyy, T., Cartwright, A. N., Lee, K. S. and Prasad, P. N., "Efficient Photodetection at IR Wavelengths by Incorporation of PbSe-Carbon-Nanotube Conjugates in a Polymeric Nanocomposite," Adv. Mater., 19, 232-236(2007). https://doi.org/10.1002/adma.200600648
  7. Robel, I. Bunker, B. A. and Kamat, P. V., "Single-Walled Carbon Nanotube-CdS Nanocomposites as Light-Harvesting Assemblies: Photoinduced Charge-Transfer Interactions," Adv. Mater., 17, 2458-2463(2005). https://doi.org/10.1002/adma.200500418
  8. Guo, Y., Shi, D., Cho, H., Dong, Z., Kulkarni, A., Pauletti, G. M., Wang, W., Lian, J., Liu, W., Ren, L., Zhang, Q., Liu, G., Huth, C., Wang, L. and Ewing, R. C., "In vivo Imaging and Drug Storage by Quantum-Dot-Conjugated Carbon Nanotubes," Adv. Funct. Mater., 18, 2489-2497(2008). https://doi.org/10.1002/adfm.200800406
  9. Fukushima, T., Kosaka, A., Ishimura, Y., Yamamoto, T., Takigawa, T., Ishii, N. and Aida, T., "Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes," Science, 300, 2072-2074(2003). https://doi.org/10.1126/science.1082289
  10. Suslick, K. S., Ultrasound: Its Chemical, Physical and Biological Effects, VCH, Weinheim, Germany(1988).
  11. Fukushima, T. and Aida, T., "Ionic Liquids for Soft Functional Materials with Carbon Nanotubes," Chem. Eur. J., 13, 5048-5058(2007). https://doi.org/10.1002/chem.200700554
  12. Choi, B. G., Park, H. S., Park, T. J., Kim, D. H., Lee, S. Y. and Hong, W. H., "Development of the Electrochemical Biosensor for Organophosphate Chemicals Using CNT/ionic Liquid Bucky Gel Electrode," Electrochem. Commun., 11, 672-675(2009). https://doi.org/10.1016/j.elecom.2009.01.006
  13. Gu, F., Li, C. and Wang, S., "Solution-chemical Synthesis of Carbon Nanotube/ZnS Nanoparticle Core/shell Heterostructures," Inorg. Chem., 46, 5343-5348(2007). https://doi.org/10.1021/ic7004858

Cited by

  1. Optimum Conditions for Introducing Free Radical Polymerizable Methacrylate Groups on the MWCNT Surface by Michael Addition Reaction vol.53, pp.1, 2015, https://doi.org/10.9713/kcer.2015.53.1.83
  2. 다중벽 탄소나노튜브와 니켈 분말을 포함하는 전도성 복합체 제조 vol.54, pp.3, 2012, https://doi.org/10.9713/kcer.2016.54.3.410
  3. 다중벽 탄소나노튜브의 분진폭발 특성 vol.55, pp.1, 2017, https://doi.org/10.9713/kcer.2017.55.1.40