• Title/Summary/Keyword: 폴리드나바이러스

Search Result 9, Processing Time 0.016 seconds

Polydnavirus and Its Novel Application to Insect Pest Control (폴리드나바이러스와 새로운 해충방제 전략)

  • Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.45 no.3 s.144
    • /
    • pp.241-259
    • /
    • 2006
  • Polydnavirus is a mutualistic DNA virus found in some braconid and ichneumonid wasps. Its genome is integrated into host chromosome as a provirus. Its replication occurs at ovarian calyx epithelium during host pupal stage to form episomal viral particles. The viral particles are delivered into hemocoel of the parasitized insect along with eggs during wasp oviposition. Several polydnaviral genomes, which are isolated from the episomal virus particles, have been sequenced and exhibit some gene families with speculative physiological functions. This review presents the viral characteristics in terms of Its parasitic physiology. For developing new insect pest control tactics, it also discusses several application strategies exploiting the viral genome to manipulate insect physiology.

Enhanced Pathogenicity of Baculovirus Using Immunosuppressive Genes Derived From Cotesia plutellae Bracovirus (폴리드나바이러스(CpBV) 유래 면역억제 유전자를 이용한 베큘로바이러스 병원력 제고 기술)

  • Kim, Yong-Gyun;Kwon, Bo-Won;Bae, Sung-Woo;Choi, Jai-Young;Je, Yeon-Ho
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.3
    • /
    • pp.283-290
    • /
    • 2008
  • Baculoviruses have been used to control some serious lepidopteran pests. However, their narrow target insect spectrum and slow efficacy are main limitations to be used in various applications. This study introduces a technique to overcome these limitations by inhibiting insect immune defence to enhance the viral pathogenicity. Polydnaviruses are an insect DNA virus group and symbiotic to some ichneumonid and braconid endoparasitoids. Cotesia plutellae bracovirus (CpBV) is a braconid polydnavirus and encodes several immunosuppressive genes. We selected seven CpBV genes and recombined them to wild type Autographa California multiple nucleopolyhedrovirus (AcNPV). A bioassay of these seven recombinants indicated that most recombinants had similar or superior efficacy to wild type AcNPV against beet armyworm, Spodoptera exigua, and diamondback moth, Plutella xylostella. Recombinant AcNPV with CpBV-ELP was the most potent in terms of lethal time by shortening more than 2 days compared to wild type AcNPV. This recombinant was further proved in its dose-dependent pathogenicity and its efficacy by spray application on S. exigua infesting cabbage cultivated in pots. We discussed the efficacy of CpBV-ELP recombinant AcNPV in terms of suppressing antiviral activity of target insects.

Polydnavirus Replication and Ovipositional Habit of Cotesia plutellae (프루텔고치벌(Cotesia plutellae) 폴리드나바이러스 복제와 산란 습성)

  • Kim Yonggyun;Bae Sangki;Lee Sunyoung
    • Korean journal of applied entomology
    • /
    • v.43 no.3 s.136
    • /
    • pp.225-231
    • /
    • 2004
  • An endoparasitoid wasp, Cotesia plutellae, has been used for a biological control agent against the diamondback moth, Plutellae xylostella. It has a symbiotic polydnavirus in their reproductive tract, which is required for its successful parasitization. Here, we measured a specific replication time of the polydnavirus during female development of C. plutellae. We, also, analyzed the reproductive potentials of female C. plutellae under mating or different host conditions. At $25^{\circ}C$, pupal C. plutellae began to develop adult tissues such as compound eyes and wings since day 2. At day 5, all adult tissues including antennae were developed and were ready to emerge. With polyclonal antibody raised against C. plutellae polydnavirus, an immunobloting could confirm virus replication at day 4 during pupal stage. Virus particles could be visualized by transmission electron microscope in the oviduct lumen of day 5 pupae. After adult eclosion, venom gland and ovarian calyx increased in size, though ovarioles did not. Mated females layed large number of eggs (over $60\%$) at first 4 days during their mean longevity of ca. 8 days at $25^{\circ}C$. Unmated females showed less active ovipositional behavior, where all the eggs developed into males. C. Plutellae parasitized both P. xylostella and fall webworm, Hyphantria cunea. However, C. Plutellae developed faster and showed higher successful paarasitization in P. xylostella than in H. cunea.

Inhibitory Effect of Cotesia plutellae Bracovirus (CpBV) on Development of a Non-natural Host, Spodoptera exigua (프루텔고치벌(Cotesia plutellae) 유래 폴리드나바이러스의 비자연 기주 파밤나방(Spodoptera exigua)에 대한 발육 억제 효과)

  • Kim Yonggyun;Kim Jiwon
    • Korean journal of applied entomology
    • /
    • v.43 no.3 s.136
    • /
    • pp.217-223
    • /
    • 2004
  • Polydnavirus is a symbiotic virus of some endoparasitic wasps and plays crucial roles in inhibiting immune responses and retarding development of the parasitized hosts. Cotesia plutellae bracovirus (CpBV) is a polydnavirus suggesting a major causative to change developmental physiology of the parasitized host. Here, we investigated whether CpBV can interrupt development of non-natural host. Beet armyworm, Spodoptera exigua, is used as a non-permissible host for parasitization of C. plutellae. Extract from the calyx region of C. plutellae contained CpBV, which was confirmed by immunoblotting with a polyclonal antibody raised against CpBV. One female equivalent of CpBV extract was injected into hemocoel of late 4th instar larvae of S. exigua. The injected larvae showed delayed larval period, decrease of body weight gain, and inability of pupal metamorphosis. These inhibitory effect of the CpBV extract was rescued by injection along with CpBV antibody, though the antibody itself did not give any effect on development of the larvae. This result clearly shows that CpBV can interrupt developmental physiology of a non-natural host for its symbiotic wasp.

Insect Resistance of Tobacco Plant Expressing CpBV-ELP1 Derived from a Polydnavirus (폴리드나바이러스 유래 CpBV-ELP1 발현 담배의 내충성)

  • Kim, Eunseong;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.56 no.1
    • /
    • pp.19-28
    • /
    • 2017
  • Polydnaviruses (PDVs) are a group of double-stranded DNA viruses symbiotic to some endoparasitoid wasps. Cotesia plutellae bracovirus (CpBV) is a PDV symbiotic to an endoparasitoid wasp, C. plutellae, parasitizing young larvae of Plutella xylostella. An early expressed gene, CpBV-ELP1, plays an important role in the parasitism by suppressing host cellular immunity by its cytotoxic activity against hemocytes. This study aimed to test its oral toxicity against insect pest by expressing it in a recombinant tobacco plant. A recombinant CpBV-ELP1 protein was produced using a baculovirus expression system and secreted to cell culture medium. The cell cultured media were used to purify CpBV-ELP1 by a sequential array of purification steps: ammonium sulfate fractionation, size exclusion chromatography, and ion exchange chromatography. Purified rCpBV-ELP1 exhibited a significant cytotoxicity against Spodoptera exigua hemocytes. CpBV-ELP1 was highly toxic to the fifth instar larvae of S. exigua by injection to hemocoel. It also showed a significant oral toxicity to fifth instar larvae of S. exigua by a leaf-dipping assay. CpBV-ELP1 was cloned into pBI121 vector under CaMV 35S promoter with opaline synthase terminator. Resulting recombinant vector (pBI121-ELP1) was used to transform Agrobacterium tumefaciens LBA4404. The recombinant bacteria were then used to induce callus of a tobacco (Nicotiana tabacum Xanthi) leaves and subsequent generation (T1) plants were selected. T1 generation tobacco plants expressing CpBV-ELP1 gave significant insecticidal activities against S. exigua larvae. These results suggest that CpBV-ELP1 gene can be used to control insect pests by constructing transgenic crops.

Mass Production of a Recombinant Baculovirus Expressing CpBV-ELP1 and Control of the Beet Armyworm, Spodoptera exigua (CpBV-ELP1 발현 재조합 벡큘로바이러스의 대량 증식과 파밤나방 방제 기술)

  • Park, Arum;Kim, Yonggyun
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.279-286
    • /
    • 2015
  • Cotesia plutellae bracovirus (CpBV) is a polydnavirus symbiotic to C. plutellae parasitizing young larvae of the diamondback moth, Plutella xylostella. Several CpBV genes play important roles in suppressing immune responses of the parasitized larvae. This study tested a hypothesis that the CpBV genes inducing host immunosuppression could be applied to develop a potent recombinant baculovirus. Based on a previous study, a recombinant baculovirus expressing CpBV-ELP1 (AcMNPV-ELP1) was selected and multiplied using larvae of the beet armyworm, Spodoptera exigua. The recombinant viruses were produced in a yield of $5{\times}10^{10}$ polyhedral inclusion body (PIB)/larva. The cultured AcMNPV-ELP1 exhibited a much higher pathogenicity against S. exigua larvae. However, its insecticidal activity was varied among larval instars of S. exigua, in which first and late instars were high susceptible. Spray of the recombinant baculovirus ($5{\times}10^6PIB/mL$) exhibited higher control efficacy (${\approx}$ 88%) against S. exigua larvae infesting cabbage than a chemical insecticide, tebufenozide, at 7 days after treatment. These results indicate that AcMNPV-ELP1 mass-cultured using host insect system is highly pathogenic and can be applied to develop a novel microbial control agent.

Gene Structure of Cotesia plutellae Bracovirus (CpBV)-$I_{k}B$ and Its Expression Pattern in the Parasitized Diamondback Moth, Plutella xylostella (프루텔고치벌 브라코바이러스(Cotesia plutellae Bracovirus) 유래 $I_{k}B$ 유전자 구조와 피기생 배추좀나방(Plutella xylostella) 체내 발현 패턴)

  • Kim Yong-Gyun;Basio Neil A.;Ibrahim Ahmed M.A.;Bae Sung-Woo
    • Korean journal of applied entomology
    • /
    • v.45 no.1 s.142
    • /
    • pp.15-24
    • /
    • 2006
  • Inhibitor kB (IkB)-like gene has been found in the genome of Cotesia plutellae bracovirus (CpBV), which is the obligatory symbiont of an endoparsitoid wasp, C. plutellae. The open reading frame of CpBV-IkB was 417 bp and encoded 138 amino acids. Four ankyrin repeat domains were found in CpBV-IkB, which shared high homology with other known polydnavirus IkBs. Considering a presumptive cellular IkB based on Drosophila Cactus, CpBV-IkB exhibited a truncated structure with deletion of signal-receiving domains, which suggested its irreversible inhibitory role in NFkB signal transduction pathway of the parasitized host in response to the wasp parasitization. CpBV-IkB was expressed only in the parasitized diamondback moth, Plutella flostella. Its expression was estimated by quantitative RT-PCR during parasitization period, showing a constitutive expression pattern from the first day of parasitization. An indirect functional analysis of CpBV-IkB was conducted and suggested a hypothesis of host antivirus inhibition.

Inhibitory Effects of a Recombinant Viral Cystatin Protein on Insect Immune and Development (바이러스 유래 시스타틴 재조합 단백질의 곤충 면역 및 발육 억제효과)

  • Kim, Yeongtae;Eom, Seonghyun;Park, Jiyeong;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.53 no.4
    • /
    • pp.331-338
    • /
    • 2014
  • Cystatins (CSTs) are reversible and competitive inhibitors of C1A cysteine proteases, corresponding to papain-like cathepsins in plants and animals. A viral CST (CpBV-CST1) was identified from a polydnavirus, Cotesia plutellae bracovirus (CpBV). Our previous study indicated that a transient expression of CpBV-CST1 interfered with immune response and development of Plutella xylostella larvae. To directly demonstrate the protein function, this study produced a recombinant CpBV-CST1 protein (rCpBV-CST1) using bacterial expression system to determine its inhibitory activity against cysteine protease and to assess its physiological alteration in insect immune and development. The open reading frame of CpBV-CST1 encodes a polypeptide of 138 amino acids (${\approx}15kDa$). rCpBV-cystatin protein in BL21 STAR (DE3) competent cells containing a recombinant pGEX4T-3:CpBV-CST1 was over-expressed by 0.5 mM IPTG for 4 h. In biological activity assay, the purified rCpBV-CST1 showed a significant inhibition against papain activity. It inhibited a cellular immune response of hemocyte nodule formation in the beet armyworm, Spodoptera exigua. Moreover, its oral administration retarded larval development of the diamondback moth, Plutella xylostella in a dose-dependent manner. These results suggest that CpBV-CST1 may be applied to control insect pest populations.

Construction of a Transgenic Tobacco Expressing a Polydnaviral Cystatin (폴리드나바이러스 유래 시스타틴 유전자 발현 형질전환 담배 제작)

  • Kim, Yeongtae;Kim, Eunsung;Park, Youngjin;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.54 no.1
    • /
    • pp.7-15
    • /
    • 2015
  • CpBV (Cotesia plutellae bracovirus) is a polydnavirus and encodes a cystatin (CpBV-CST1) gene. Its overexpression suppresses insect immunity and alters insect developmental processes. This study aimed to construct a genetically modified (GM) tobacco to further explore the physiological function of the viral cystatin and to apply to control insect pests. To this end, the transgenic tobacco lines were screened in expression of the target gene and assessed in insecticidal activity. A recombinant vector (pBI121-CST) was prepared and used to transform a bacterium, Agrobacterium tumefasciens. The transformed bacteria were used to generate transgenic tobacco lines, which were induced to grow callus and resulted in about 92% of shoot regeneration. The regenerated plants were screened by PCR analysis to confirm the insertion of the target gene in the plant genome. In addition, the expression of the target gene was assessed in the regenerated plants by quantitative real-time PCR (qRT-PCR). The qRT-PCR analysis showed that the transgenic line plant expressed the target gene about 17 times more than the control tobacco, indicating a stable insertion and expression of the target gene in the transgenic tobacco line. The insecticidal activity was then analyzed using the screened transgenic tobacco lines against the teneral 1st instar larvae of the oriental tobacco budworm, Helicoverpa assulta. Though there was a variation in the insecticidal efficacy among transgenic lines, T9 and T12 lines exhibited more than 95% mortality at 7 days after feeding treatment. These results suggest that CpBV-CST1 is a useful genetic resource to be used to generate GM crop against insect pests.