Browse > Article
http://dx.doi.org/10.7585/kjps.2015.19.3.279

Mass Production of a Recombinant Baculovirus Expressing CpBV-ELP1 and Control of the Beet Armyworm, Spodoptera exigua  

Park, Arum (Department of Bioresource Sciences, College of Natural Sciences, Andong National University)
Kim, Yonggyun (Department of Bioresource Sciences, College of Natural Sciences, Andong National University)
Publication Information
The Korean Journal of Pesticide Science / v.19, no.3, 2015 , pp. 279-286 More about this Journal
Abstract
Cotesia plutellae bracovirus (CpBV) is a polydnavirus symbiotic to C. plutellae parasitizing young larvae of the diamondback moth, Plutella xylostella. Several CpBV genes play important roles in suppressing immune responses of the parasitized larvae. This study tested a hypothesis that the CpBV genes inducing host immunosuppression could be applied to develop a potent recombinant baculovirus. Based on a previous study, a recombinant baculovirus expressing CpBV-ELP1 (AcMNPV-ELP1) was selected and multiplied using larvae of the beet armyworm, Spodoptera exigua. The recombinant viruses were produced in a yield of $5{\times}10^{10}$ polyhedral inclusion body (PIB)/larva. The cultured AcMNPV-ELP1 exhibited a much higher pathogenicity against S. exigua larvae. However, its insecticidal activity was varied among larval instars of S. exigua, in which first and late instars were high susceptible. Spray of the recombinant baculovirus ($5{\times}10^6PIB/mL$) exhibited higher control efficacy (${\approx}$ 88%) against S. exigua larvae infesting cabbage than a chemical insecticide, tebufenozide, at 7 days after treatment. These results indicate that AcMNPV-ELP1 mass-cultured using host insect system is highly pathogenic and can be applied to develop a novel microbial control agent.
Keywords
Baculovirus; Cotesia plutellae; Plutella xylostella; Polydnavirus; Recombinant; Spodoptera exigua;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Bae, S. and Y. Kim (2004) Host physiological changes due to parasitism of a braconid wasp, Cotesia plutellae, on diamondback moth, Plutella xylostella. Comp. Biochem. Physiol. A 138:39-44.   DOI
2 Barandoc, K. P. and Y. Kim (2009) A technique of segment expression and RNA interference (SERI) reveals a specific physiological function of a cysteine-rich protein gene encoded in Cotesia plutellae bracovirus. J. Microbiol. Biotechnol. 19:610-615.
3 Bezier, A., M. Annaheim, J. Herbiniere, C. Wetterwald, G. Gyapay, S. Bernard-Samain, P. Wincker, I. Roditi, M. Heller, M. Belghazi, R. Pfister-Wilhem, G. Periquet, C. Dupuy, E. Huguet, A.N. Volkoff, B. Lanzrein and J. M. Drezen (2009) Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science 323:926-930.   DOI   ScienceOn
4 Chen, Y., F. Gao, X. Ye, S. Wei, M. Shi, H. Zheng and X. Chen (2011) Deep sequencing of Cotesia vestalis bracovirus reveals the complexity of a polydnavirus genome. Virology 414:42-50.   DOI
5 Choi, J. Y., J. Y. Rho, J. N. Kang, H. J. Shim, S. D. Woo, B. R. Jin, M. S. Li and Y. H. Je (2005) Genomic segments cloning analysis of Cotesia plutellae polydnavirus using plasmid capture system. Biochem. Biophys. Res. Commun. 322: 487-493.
6 Goh, H. K., S. G. Lee, B. P. Lee, K. M. Choi and J. H. Kim (1991) Simple mass-rearing of beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae), on an artificial diet. Kor. J. Appl. Entomol. 29:180-183.
7 Hepat, R. and Y. Kim (2011) Transient expression of a viral histone H4 inhibits expression of cellular and humoral immune-associated genes in Tribolium castaneum. Biochem. Biophys. Res. Commun. 415:279-283.   DOI
8 Hepat, R., J. J. Song, D. Lee and Y. Kim (2013) A viral histone H4 joins to eukaryotic nucleosomes and alters host gene expression. J. Virol. 87:11223-11230.   DOI
9 Jia, B., Y. Liu, Y. C. Zhu, X. Liu, C. Gao and J. Shen (2008) Inheritance, fitness cost and mechanism of resistance to tebufenozide in Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Pest Manag. Sci. 65:996-1002.
10 Kim, S., J. Park, D. Kim, H. Choi, S. Kim and I. Hwang (2004) Effects of different temperatures on pathogenicity of Spodoptera exigua nucleopolyhedrovirus (SeNPV). Kor. J. Appl. Entomol. 43:329-332.
11 Kim, Y., J. Y. Choi and Y. H. Je (2007) Cotesia plutellae bracovirus genome and its function in altering insect physiology. J. Asia Pac. Entomol. 10:181-191.   DOI
12 Kim, Y., B. Kwon, S. Bae, J. Y. Choi and Y. H. Je (2008) Enhanced pathogenicity of baculovirus using immunosuppressive genes derived from Cotesia plutellae bracovirus. Kor. J. Pestic. Sci. 12:283-290.
13 Kim, Y., J. Lee, S. Kang and S. Han (1997) Variation in insecticide susceptibilities of the beet armyworm, Spodoptera exigua (Hubner): esterase and acetylcholinesterase activities. Kor. J. Appl. Entomol. 36:172-178.
14 Kim, Y., J. Lee, S. Kang and S. Han (1998) Age variation in insecticide susceptibility and biochemical changes of beet armyworm, Spodoptera exigua (Hubner). J. Asia Pac. Entomol. 1:109-113.   DOI
15 Kim, Y. and Y. Son (2006) Parasitism of Cotesia plutellae alters morphological and biochemical characters of diamondback moth, Plutella xylostella. J. Asia Pac. Entomol. 9:37-42.   DOI
16 SAS Institute, Inc. (1989) SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C.
17 Kwon, B. and Y. Kim (2008) Transient expression of an EP1-like gene encoded in Cotesia plutellae bracovirus suppresses the hemocyte population in the diamondback moth, Plutella xylostella. Dev. Comp. Immunol. 32:932-942.   DOI
18 Lee, S. and Y. Kim (2008) Two homologous parasitism-specific proteins encoded in Cotesia plutellae bracovirus and their expression profiles in parasitized Plutella xylostella. Arch. Insect Biochem. Physiol. 67:157-171.   DOI
19 Moar, W. J., M. Pusztai-Carey, H. Van Faassen, D. Bosch, R. Frutos, C. Rang, K. Luo and M. J. Adang (1995) Development of Bacillus thuringiensis CryIC Resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Appl. Environ. Microbiol. 61:2086-2092.
20 Strand, M. R. (2010) Polydnaviruses, In Insect Virology; Asgari, S. and K.N. Johnson (Eds.); Caister Academic Press, Norwich, pp. 171-197.
21 Volkoff, A. N., V. Jouan, S. Urbach, S. Samain, M. Bergoin, P. Wincker, E. Demettre, F. Cousserans, B. Provost, F. Coulibaly, F. Legeai, C. Beliveau, M. Cusson, G. Gyapay and J. M. Drezen (2010) Analysis of virion structural components reveals vestiges of the ancestral ichnovirus genome. PLoS Pathog. 6:e1000923.   DOI   ScienceOn
22 Webb, B. A., N. E. Beckage, Y. Hayakawa, P. J. Krell, B. Lanzrein, D. B. Stoltz, M. R. Strand and M. D. Summers (2000) Polydnaviridae, In Virus Taxonomy; van Regenmortel, M. H. V., C. M. Faquet, D. H. L. Bishop, E. B. Carstens, M. K. Estes, S. M. Lennon, J. Maniloff, M. A. Mayo, D. J. McGeoch, C. R. Pringle and R. B. Wickner (Eds.); Academic Press, New York, pp. 253-260.
23 Wyler, T. and B. Lanzrein (2003) Ovary development and polydnavirus morphogenesis in the parasitic wasp Chelonus inanitus. II. Ultrastructural analysis of calyx cell development, virion formation and release. J. Gen. Virol. 84, 1151-1163.   DOI
24 Webb, B. A. and M. R. Strand (2005) The biology and genomics of polydnaviruses. In: Gilbert, L., Iatrou, K., Gill, S.S. (Eds.), Comprehensive Molecular Insect Science. Elsevier Inc., San Diego. pp. 323-360.
25 Wing, K. D., R. A. Slawecki and G. R. Carlson (1988) RH-5849, a non-steroidal ecdysone agonist: effects on larval Lepidoptera. Science 241:470-472.   DOI