Browse > Article
http://dx.doi.org/10.5656/KSAE.2016.11.0.063

Insect Resistance of Tobacco Plant Expressing CpBV-ELP1 Derived from a Polydnavirus  

Kim, Eunseong (Department of Bio-Sciences, Andong National University)
Kim, Yonggyun (Department of Bio-Sciences, Andong National University)
Publication Information
Korean journal of applied entomology / v.56, no.1, 2017 , pp. 19-28 More about this Journal
Abstract
Polydnaviruses (PDVs) are a group of double-stranded DNA viruses symbiotic to some endoparasitoid wasps. Cotesia plutellae bracovirus (CpBV) is a PDV symbiotic to an endoparasitoid wasp, C. plutellae, parasitizing young larvae of Plutella xylostella. An early expressed gene, CpBV-ELP1, plays an important role in the parasitism by suppressing host cellular immunity by its cytotoxic activity against hemocytes. This study aimed to test its oral toxicity against insect pest by expressing it in a recombinant tobacco plant. A recombinant CpBV-ELP1 protein was produced using a baculovirus expression system and secreted to cell culture medium. The cell cultured media were used to purify CpBV-ELP1 by a sequential array of purification steps: ammonium sulfate fractionation, size exclusion chromatography, and ion exchange chromatography. Purified rCpBV-ELP1 exhibited a significant cytotoxicity against Spodoptera exigua hemocytes. CpBV-ELP1 was highly toxic to the fifth instar larvae of S. exigua by injection to hemocoel. It also showed a significant oral toxicity to fifth instar larvae of S. exigua by a leaf-dipping assay. CpBV-ELP1 was cloned into pBI121 vector under CaMV 35S promoter with opaline synthase terminator. Resulting recombinant vector (pBI121-ELP1) was used to transform Agrobacterium tumefaciens LBA4404. The recombinant bacteria were then used to induce callus of a tobacco (Nicotiana tabacum Xanthi) leaves and subsequent generation (T1) plants were selected. T1 generation tobacco plants expressing CpBV-ELP1 gave significant insecticidal activities against S. exigua larvae. These results suggest that CpBV-ELP1 gene can be used to control insect pests by constructing transgenic crops.
Keywords
Polydnavirus; Transgenic plant; Cytotoxicity; Insecticidal activity; Spodoptera exigua; GM crop;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kim, Y. 2006. Polydnavirus and its novel application to insect pest control. Korean J. Appl. Entomol. 45, 241-259.
2 Kim, Y., Bae, S., Lee, S., 2004. Polydnavirus replication and ovipositional habit of Cotesia plutellae. Korean J. Appl. Entomol. 43, 225-231.
3 Kim, Y., Ryu, S., 2007. Ultrastructure of Cotesia plutellae bracovirus in its replication at wasp ovarian calyx. J. Asia Pac. Entomol. 10, 357-361.   DOI
4 Kumar, S., Gu, X., Kim, Y., 2016a. A viral histone H4 suppresses insect insulin signal and delays host development. Dev. Comp. Immunol. 63, 66-77.   DOI
5 Kumar, S., Venkata, P., Kim, Y., 2016b. Suppressive activity of a viral histone H4 against two host chromatin remodeling factors: lysine demethylase and SWI/SNF. J. Gen. Virol., In press.
6 Kwon, B., Kim, Y., 2008. Transient expression of an EP1-like gene encoded in Cotesia plutellae bracovirus suppresses the hemocyte population in the diamondback moth, Plutella xylostella. Dev. Comp. Immunol. 32, 932-942.   DOI
7 Kwon, B., Song, S., Choi, J.Y., Je, Y.H., Kim, Y., 2010. Transient expression of specific Cotesia plutellae bracoviral segments induces prolonged larval development of the diamondback moth, Plutella xylostella. J. Insect Physiol. 56, 650-658.   DOI
8 Lee, S., Kim, Y., 2008. Two homologous parasitism-specific proteins encoded in Cotesia plutellae bracovirus and their expression profiles in parasitized Plutella xylostella. Arch. Insect Biochem. Physiol. 67, 157-171.   DOI
9 Maiti, I.B., Dey, N., Pattanaik, S., Dahlman, D.L., Rana, R.L., Webb, B.A., 2003. Antibiosis-type insect resistance in transgenic plants expressing a teratocyte secretory protein (TSP14) gene from a hymenopteran endoparasite (Microplitis croceipes). Plant Biotechnol. J. 1, 209-219.   DOI
10 Park, J., Kim, Y., 2012. Change in hemocyte populations of the beet armyworm, Spodoptera exigua, in response to bacterial infection and eicosanoid mediation. Korean J. Appl. Entomol. 61, 349-356.
11 Prasad, S.V., Hepat, R., Kim, Y., 2014. Selectivity of a translation-inhibitory factor, $CpBV15{\beta}$, in host mRNAs and subsequent alterations in host development and immunity. Dev. Comp. Immunol. 44, 152-162.   DOI
12 Pruijssers, A.J., Strand, M.R., 2007. PTP-H2 and PTP-H3 from Microplitis demolitor bracovirus localize to focal adhesions and are antiphagocytic in insect immune cells. J. Virol., 81, 1209-1219.   DOI
13 Sambrook, J., Fritsh, E.F., Maniatis, T., 1989. Molecular cloning. A laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, NY.
14 Stoltz, D.B., 1990. Evidence for chromosomal transmission of polydnavirus genomes. Can. J. Microbiol. 36, 538-543.   DOI
15 Strand, M.R., Burke, G.R., 2013. Polydnavirus-wasp associations: evolution, genome organization, and function. Curr. Opin. Virol. 3, 587-594.   DOI
16 Strand, M.R., Burke, G.R., 2015. Polydnaviruses: from discovery to current insights. Virology 479-480, 393-402   DOI
17 Surakasi, V.P., Nalini, M., Kim, Y., 2011. Host translational control of a polydnavirus, Cotesia plutellae bracovirus, by sequestering host eIF4A to prevent formation of a translation initiation complex. Insect Mol. Biol. 20, 609-618.   DOI
18 Volkoff, A.N., Jouan, V., Urbach, S., Samain, S., Bergoin, M., Wincker, P., Demettre, E., Cousserans, F., Provost, B., Coulibaly, F., Legeai, F., Beliveau, C., Cusson, M., Gyapay, G., Drezen, J.M., 2010. Analysis of virion structural components reveals vestiges of the ancestral ichnovirus genome. PLoS Pathog. 6, e1000923.   DOI
19 Webb, B.A., Strand, M.R., Dickey, S.E., Beck, M.H., Hilgarth, R.S., Kadash, K., Kroemer, J.A., Lindstorm, K.G., Rattanadechakul, W., Shelby, K.S., Thoetkiattikul, H., Turnbull, M.W., Witherell, R.A., Barney, W.E., 2006. Polydnavirus genomes reflect their dual roles as mutualists and pathogens. Virology 347, 160-174.   DOI
20 Webb, B.A., Beckage, N.E., Hayakawa, Y., Krell, P.J., Lanzrein, B., Stoltz, D.B., Strand, M.R., Summers, M.D., 2000. Family polydnaviridae. in: van Regenmortel, M.H.V., Faquet, C.M., Bishop, D.H.L., Carstens, E.B., Estes, M.K., Lennon, S.M., Maniloff, J.M., Mayo, A., McGeoch, D.J., Pringle, C.R., Wickner, R.B. (Eds.), Virus taxonomy. Academic Press, New York. pp. 253-260.
21 Wyler, T., Lanzrein, B., 2003. Ovary development and polydnavirus morphogenesis in the parasitic wasp Chelonus inanitus. II. Ultrastructural analysis of calyx cell development, virion formation and release. J. Gen. Virol. 84, 1151-1163.   DOI
22 Bezier, A., Annaheim, M., Herbiniere, J., Wetterwald, C., Gyapay, G., Bernard-Samain, S., Wincker, P., Roditi, I., Heller, M., Belghazi, M., Pfister-Wilhem, R., Periquet, G., Dupuy, C., Huguet, E., Volkoff, A.N., Lanzrein, B., Drezen, J.M., 2009. Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science 323, 926-930.   DOI
23 Ali, R., Kim, Y., 2012. A novel polydnaviral gene family, BEN, and its immunosuppressive function in larvae of Plutella xylostella parasitized by Cotesia plutellae. J. Invertebr. Pathol. 110, 389-397.   DOI
24 Bae, S., Kim, Y., 2004. Host physiological changes due to parasitism of a braconid wasp, Cotesia plutellae, on diamondback moth, Plutella xylostella. Comp. Biochem. Physiol. A 138, 39-44.   DOI
25 Basio, N.A.M., Kim, Y., 2006. Additive effect of teratocyte and calyx fluid from Cotesia plutellae on immunosuppression of Plutella xylostella. Physiol. Entomol. 31, 341-347.   DOI
26 Choi, J.Y., Roh, J.Y., Kang, J.N., Shim, H.J., Woo, S.D., Jin, B.R., Li, M.S., Je, Y.H., 2005. Genomic segments cloning and analysis of Cotesia plutellae polydnavirus using plasmid capture system. Biochem. Biophys. Res. Commun. 332, 487-493.   DOI
27 Bezier, A., Louis, F., Jancek, S., Periquet, G., Theze, J., Gyapay, G., Musset, K., Lesobre, J., Lenoble, P., Dupuy, C., Gundersen- Rindal, D., Herniou, E.A., Drezen, J.M., 2013. Functional endogenous viral elements in the genome of the parasitoid wasp Cotesia congregata: insights into the evolutionary dynamics of bracoviruses. Philos. Trans. R Soc. Lond. B Biol. Sci. 368, 20130047.   DOI
28 Bradford, M.M., 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.   DOI
29 Chen, Y.F., Gao, F., Ye, X.Q., Wei, S.J., Shi, M., Zheng, H.J., Chen, X.X., 2011. Deep sequencing of Cotesia vestalis bracovirus reveals the complexity of a polydnavirus genome. Virology 414, 42-50.   DOI
30 Di Lelio, I., Caccia, S., Coppola, M., Buonanno, M., Di Prisco, G., Varricchio, P., Franzetti, E., Corrado, G., Monti, S.M., Rao, R., Casartelli, M., Pennacchio, F., 2014. A virulence factor encoded by a polydnavirus confers tolerance to transgenic tobacco plants against lepidopteran larvae, by impairing nutrient absorption. PLoS ONE 9, e113988.   DOI
31 Gad, W., Kim, Y., 2008. A viral histone H4 encoded in Cotesia plutellae bracovirus inhibits hemocyte spreading behavior of the diamondback moth, Plutella xylostella. J. Gen. Virol. 89, 931-938.   DOI
32 Gad, W., Kim, Y., 2009. N-terminal tail of a viral histone H4 encoded in Cotesia plutellae bracovirus is essential to suppress gene expression of host histone H4. Insect Mol. Biol. 18, 111-118.   DOI
33 Herniou, E.A., Huguet, E., Theze, J., Bezier, A., Periquet, G., Drezen, J.M., 2013. When parasitic wasps hijacked viruses: genomic and functional evolution of polydnaviruses. Philos. Trans. R Soc. Lond. B Biol. Sci. 368, 20130051.   DOI
34 Goh, H.G., Lee, S.G., Lee, B.P., Choi, K.M., Kim, J.H., 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), on an artificial diet. Korean J. Appl. Entomol. 29, 180-183.
35 Harwood, S.H., Grosovsky, A.J., Cowles, E.A., Davis, J.W., Beckage, N.E., 1994. An abundantly expressed hemolymph glycoprotein isolated from newly parasitized Manduca sexta larvae is a polydnavirus gene product. Virology 205, 381-392.   DOI
36 Hepat, R., Song, J., Lee, D., Kim, Y., 2013. A viral histone H4 joins to eukaryotic nucleosomes and alters host gene expression. J. Virol. 87, 11223-11230.   DOI
37 Ibrahim, A.M., Kim, Y., 2006. Parasitism by Cotesia plutellae alters the hemocyte population and immunological function of the diamondback moth, Plutella xylostella. J. Insect Physiol. 52, 943-950.   DOI
38 Ibrahim AM, Kim Y. 2008. Transient expression of protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus inhibits insect cellular immune responses. Naturwissenschaften 95, 25-32.
39 Jung, S., Kwoen, M., Choi, J.Y., Je, Y.H., Kim, Y., 2006. Parasitism of Cotesia spp. enhances susceptibility of Plutella xylostella to other pathogens. J. Asia Pac. Entomol. 9, 255-263.   DOI
40 Kim, E., Kim, Y., 2016. Translational control of host gene expression by a Cys-motif protein encoded in a bracovirus. PLoS ONE 11, e0161661.   DOI
41 Kim, E., Kim, Y., Yeam, I., Kim, Y., 2016. Transgenic expression of a viral cystatin gene CpBV-CST1 in tobacco confers insect resistance. Environ. Entomol. 45, 1322-1331.   DOI