Enhanced Pathogenicity of Baculovirus Using Immunosuppressive Genes Derived From Cotesia plutellae Bracovirus

폴리드나바이러스(CpBV) 유래 면역억제 유전자를 이용한 베큘로바이러스 병원력 제고 기술

  • Kim, Yong-Gyun (Department of Bioresource Sciences, College of Natural Sciences, Andong National University) ;
  • Kwon, Bo-Won (Central Research Institute, Kyung Nong Co.) ;
  • Bae, Sung-Woo (Department of Bioresource Sciences, College of Natural Sciences, Andong National University) ;
  • Choi, Jai-Young (Department of Entomology, College of Agriculture and Life Science, Seoul National University) ;
  • Je, Yeon-Ho (Department of Entomology, College of Agriculture and Life Science, Seoul National University)
  • 김용균 (안동대학교 자연과학대학 생명자원과학과) ;
  • 권보원 ((주) 경농 중앙연구소) ;
  • 배성우 (안동대학교 자연과학대학 생명자원과학과) ;
  • 최재영 (서울대학교 농업생명과학대학 곤충학과) ;
  • 제연호 (서울대학교 농업생명과학대학 곤충학과)
  • Published : 2008.09.30

Abstract

Baculoviruses have been used to control some serious lepidopteran pests. However, their narrow target insect spectrum and slow efficacy are main limitations to be used in various applications. This study introduces a technique to overcome these limitations by inhibiting insect immune defence to enhance the viral pathogenicity. Polydnaviruses are an insect DNA virus group and symbiotic to some ichneumonid and braconid endoparasitoids. Cotesia plutellae bracovirus (CpBV) is a braconid polydnavirus and encodes several immunosuppressive genes. We selected seven CpBV genes and recombined them to wild type Autographa California multiple nucleopolyhedrovirus (AcNPV). A bioassay of these seven recombinants indicated that most recombinants had similar or superior efficacy to wild type AcNPV against beet armyworm, Spodoptera exigua, and diamondback moth, Plutella xylostella. Recombinant AcNPV with CpBV-ELP was the most potent in terms of lethal time by shortening more than 2 days compared to wild type AcNPV. This recombinant was further proved in its dose-dependent pathogenicity and its efficacy by spray application on S. exigua infesting cabbage cultivated in pots. We discussed the efficacy of CpBV-ELP recombinant AcNPV in terms of suppressing antiviral activity of target insects.

베큘로바이러스는 일부 나비목 해충을 대상으로 방제하는 데 사용되고 있다. 그러나 화학농약에 비해 느린 살충효과 및 좁은 적용 해충으로 응용 범위에 한계를 갖고 있다. 본 연구는 이러한 한계를 극복하고자 곤충의 면역억제을 통해 바이러스 병원력을 제고시킬 수 있는 기술을 소개한다. 폴리드나바이러스는 일부 맵시벌 및 고치벌에 공생하는 곤충 DNA 바이러스 분류군이다. 프루텔고치벌(Cotesia plutellae) 유래 CpBV(Cotesia plutellae bracovirus)는 브라코바이러스에 속한 폴리드나바이러스로서 면역어제를 발휘하는 여러 유전자를 함유하고 있다. 이 가운데 7개의 CpBV유전자를 선발하고 이를 야생형Autographa California multiple nucleopolyhedrovirus(AcNPV)에 재조합하였다. 이들 재조합 베큘로바이러스를 이용하여 파밤나방(Spodoptera exigua)과 배추좀나방(Plutella xylostella)을 대상으로 생물 검정한 결과, 이들 대부분은 야생형의 바이러스와 유사하거나 우수한 살충력을 나타냈다. 특히 CpBV-ELP를 포함한 재조합 베큘로바이러스가 대조바이러스에 비해 살충시간을 약 2 일 이상단축시킴으로 가장 우수하였다. 이 재조합 베큘로바이러스는 농도에 따른 살충력증가와 배추를 가해하는 파밤나방을 대상으로 한 바이러스 살포 처리가 뚜렷한 방제효과를 나타내어 현장 적용 가능성을 제시하였다. 또한 본 연구는 이 재조합 바이러스의 살충력 제고 현상을 CpBV-ELP의 항바이러스 기작 억제라는 측면에서 고찰했다.

Keywords

References

  1. Basio, N. A. M and Y. Kim (2006) Additive effect of teratocyte and calyx fluid from Cotesia plutellae on immunosuppression of Plutella xylostella. Physiol. Entomol. 31:341-347 https://doi.org/10.1111/j.1365-3032.2006.00524.x
  2. Clem, R. J. (2001) Baculoviruses and apoptosis: the good, the bad, and the ugly. Cell Death Differ. 8:137-143 https://doi.org/10.1038/sj.cdd.4400821
  3. Espagne, E., C. Dupuy, E. Huguet, L. Cattolico, B. Provost, N. Martins, M. Poirie, G. Periquet and J. M. Drezen (2004) Genome sequence of a polydnavirus: insights into symbiotic virus evolution. Science 306:286-289 https://doi.org/10.1126/science.1103066
  4. Federici, B. A. and R. H. Rice (1997) Organization and molecular characterization of genes in the polyhedrin region of the Anagrapha falcifera multinucleocapsid NPV. Arch. Virol. 142:333-348 https://doi.org/10.1007/s007050050080
  5. Gad, W. and Y. Kim (2008) A viral histone H4 encoded by Cotesia plutellae bracovirus inhibits haemocyte-spreading behaviour of the diamondback moth, Plutella xylostella. J. Gen. Virol. 89:931-938 https://doi.org/10.1099/vir.0.83585-0
  6. Gillespie, J. P., M. R. Kanost and T. Trenczek (1997) Biological mediators of insect immunity. Annu. Rev. Entomol. 42:611-643 https://doi.org/10.1146/annurev.ento.42.1.611
  7. Gho, H. K., S. G. Lee, B. P. Lee, K. M. Choi and J. H. Kim (1991) Simple mass-rearing of beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae), on an artificial diet. Korean J. Appl. Entomol. 29:180-183
  8. Ibrahim, A. M. A. and Y. Kim (2006) Parasitism by Cotesia plutellae alters the hemocyte population and immunological function of the diamondback moth, Plutella xylostella. J. Insect Physiol. 52:943-950 https://doi.org/10.1016/j.jinsphys.2006.06.001
  9. Ibrahim, A. M. A. and Y. Kim (2008) Transient expression of protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus inhibits insect cellular immune responses. Naturwissenschaften 95:25-32 https://doi.org/10.1007/s00114-007-0290-7
  10. Je, Y. H., J. H. Chang, J. Y. Rho and B. R. Jin (2001) Generation of baculovirus expression vector using defective Autographa californica nuclear polyhedrosis virus genome maintained in Escherichia coli for $Occ^{+}$ virus production. Int. J. Indust. Entomol. 2:155-160
  11. Jung, S., M. Kwoen, J. Y. Choi, Y. H. Je and Y. Kim (2006) Parastism of Cotesia spp. enhances susceptibility of Plutella xylostella to other pathogens. J. Asia-Pac. Entomol. 9:255-263 https://doi.org/10.1016/S1226-8615(08)60300-3
  12. Kim, Y., J. Y. Choi and Y. H. Je (2007) Cotesia plutellae bracovirus genome and its function in altering insect physiology. J. Asia-Pac. Entomol. 10:181-191 https://doi.org/10.1016/S1226-8615(08)60351-9
  13. Kim, Y. and S. Ryu (2007) Ultrastructure of Cotesia plutellae bracovirus in its replication at wasp ovarian calyx. J. Asia-Pac. Entomol. 10:357-361 https://doi.org/10.1016/S1226-8615(08)60376-3
  14. Kirkpatrick, B. A., J. O. Washburn and L. E. Volkman (1998) AcMNPV pathogenesis and developmental resistance in fifth instar Heliothis virescens, J, Invertebr. Pathol. 72:63-72 https://doi.org/10.1006/jipa.1997.4752
  15. Krell, P. J., M. D. Summers and S. B. Vinson (1982) Virus with a multipartite superhelical DNA genome from the ichneumonid parasitoid Campoletis sonorensis. J. Virol. 43:859-870
  16. Kroemer, J. A. and B. A. Webb (2004) Polydnavirus genes and genomes: emerging gene families and new insights into polydnavirus replication. Annu. Rev. Entomol. 49:431-456 https://doi.org/10.1146/annurev.ento.49.072103.120132
  17. Kwon, B. and Y. Kim (2008) Transient expression of an EP1-like gene encoded in Cotesia plutellae bracovirus suppresses the hemocyte population in the diamondback moth, Plutella xylostella. Dev. Comp. Immunol. 32:932-942 https://doi.org/10.1016/j.dci.2008.01.005
  18. Lavine, M. D. and M. R. Strand (2002) Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 32:1295-1309 https://doi.org/10.1016/S0965-1748(02)00092-9
  19. Lee, S., N. A. Basio, D. S. Kim and Y. Kim (2005) Proteomic analysis of parasitization by Cotesia plutellae against diamondback moth, Plutella xylostella. J. Asia-Pac. Entomol. 8:53-60 https://doi.org/10.1016/S1226-8615(08)60071-0
  20. Lee, S. and Y. Kim (2008) Two homologous parasitism-specific proteins encoded in Cotesia plutellae bracovirus and their expression profiles in parasitized Plutella xylostella. Arch. Insect Biochem. Physiol. 67:157-171 https://doi.org/10.1002/arch.20218
  21. Lee, S., M. Nalini and Y. Kim (2008) A viral lectin encoded in Cotesia plutellae bracovirus and its immunosuppressive effect on host hemocytes. Comp. Biochem. Physiol. 149A: 351-361
  22. Lowenberger, C. 2001. Innate immune response of Aedes aegypti. Insect Biochem. Mol. Biol. 31:219-229
  23. Mackauer, M. and P. Sequeira (1993) Patterns of development in insect parasites. pp. 1-23. In Parasites and Pathogens of Insects (Eds. N.E. Beckage, S.N. Thompson and G.A. Federici). Academic Press, New York
  24. Meister, M., C. Hetru and J. A. Hoffmann (2000) The antimicrobial host defense of Drosophila. pp. 17-36. In Origin and Evolution of the Vertebrate Immune System. Current Topics in Microbiology (eds. L. Du Pasquier and G.W. Litman), Vol. 248, Springer-Verlag, Berlin, Germany
  25. Nalini, M., J. Y. Choi, Y. H. Je, I. Hwang and Y. Kim (2008) Immunoevasive property of a polydnaviral product, CpBV- lectin, protects the parasitoid egg from hemocytic encapsulation of Plutella xylostella (Lepidoptera: Yponomeutidae). J. Insect Physiol. 54:1125-1131 https://doi.org/10.1016/j.jinsphys.2008.04.023
  26. Nalini, M. and Y. Kim (2007) A putative protein translation inhibitory factor encoded by Cotesia plutellae bracovirus suppresses host hemocyte-spreading behavior. J. Insect Physiol. 53:1283-1292 https://doi.org/10.1016/j.jinsphys.2007.07.004
  27. O'Reilly, D. R., L. K. Miller and V.A. Luckow (1992) Baculovirus expression vectors: a laboratory manual. Oxford University, New York
  28. Quicke, D. L. J. (1997) Parasitic Wasps. Chapman & Hall, U.K
  29. Raymond, M. (1985) Presentation d'un programme d'analyse log-probit pour micro-ordinateur. Cah. ORS-TOM. Ser. Ent. Med. et Parasitol. 22:117-121
  30. SAS Institute, Inc. (1989) SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C
  31. Webb, B. A. 1998. Polydnavirus biology, genome structure, and evolution. pp. 105-139. In The Insect Virus (eds. L.K. Miller and L.A. Balls). Plenum, New York
  32. Washburn, J. O., B. A. Kirkpatrick and L. E. Volkman (1995) Comparative pathogenesis of Authographa californica M nuclear polyhedrosis virus in larvae of Trichoplusia ni and Heliothis virescens. Virology 209:561-568 https://doi.org/10.1006/viro.1995.1288
  33. Washburn, J. O., J. F. Wong and L. E. Volkman (2001) Comparative pathogenesis of Helicoverpa zea S nucleopolyhedrovirus in noctuid larvae. J. Gen. Virol. 82:1777-1784 https://doi.org/10.1099/0022-1317-82-7-1777
  34. Webb, B. A. and M. R. Strand (2005) The biology and genomes of polydnavirus. pp. 323-360. In Comprehensive Molecular Insect Science (eds. L.I. Gilbert, K. Iatrou and S.S. Gill), Elsevier, New York
  35. 김용균, 배상기, 이선영 (2004) 프루텔고치벌(Cotesia plutellae) 폴리드나바이러스 복제와 산란 습성. 한응곤지 43:225-231
  36. 김용균, N. Basio, A. M. A. Ibrahim, 배성우 (2006) 프루텔고치벌 브라코바이러스 (Cotesia plutellae bracovirus) 유래 IkB 유전자 구조와 피기생 배추좀나방 (Plutella xylostella) 체내 발현 패턴. 한응곤지 45:15-24
  37. 김지민, M. Nalini, 김용균 (2008) 파밤나방(Spodoptera exigua)에 대한 곤충병원세균류 배양액의 곤충면역억제활성 및 비티 생물농약과 혼합효과. 농약과학회지 12:184-191