• Title/Summary/Keyword: 폐루프시스템

Search Result 167, Processing Time 0.027 seconds

Design of Adaptive Controller for Factory Automation Facility with Unmodeled Dynamics (자동화설비의 모델 불확실성을 고려한 적응제어기 설계)

  • 이형찬
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.1
    • /
    • pp.119-127
    • /
    • 1999
  • In this paper, a robust direct adaptive contrdler is presented in a linear time-invariant. Continuous systems with unmodeded dynamics and bounded disturbance using a rmdified control law and the adaptive law to Compensate for the drawback of ${\sigma}$-modification algorithm. The proposed algorithm is awlied to a plant with unrmdeled dynamics represented as a singular perturbation. Boundness of all signals in overall system is guaranteed with mathematical analysis. simulation results are presented the effectiveness foc the first-order plant even in the presence of unmodelled dynamics or bounded disturbance simulatneousIy.eousIy.

  • PDF

A Robust Recovery Method of Reference Clock against Random Delay Jitter for Satellite Multimedia System (위성 멀티미디어 시스템을 위한 랜덤 지연지터에 강인한 기준 클럭 복원)

  • Kim Won-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.2
    • /
    • pp.95-99
    • /
    • 2005
  • This paper presents an accurate recovery method of the reference clock which is needed for network synchronization in two-way satellite multimedia systems compliant with DVB-RCS specification and which use closed loop method for burst synchronization. In these systems, the remote station transmits TDMA burst via return link. For burst synchronization, it obtains reference clock from program clock reference (PCR) defined by MPEG-2 system specification. The PCR is generated periodically at the hub system by sampling system clock which runs at 27MHz $\pm$ 30ppm. Since the reference clock is recovered by means of digital PLL(DPLL) using imprecise PCR values due to variable random jitter, the recovered clock frequency of remote station doesn't exactly match reference clock of hub station. We propose a robust recovery method of reference clock against random delay jitter The simulation results show that the recovery error is remarkably decreased from 5 clocks to 1 clock of 27MHz relative to the general DPLL recovery method.

  • PDF

A Single-Phase Hybrid Active Filter for AC Electrified Railway Systems (교류전기철도 급전시스템의 전기품질 향상을 위한 단상 하이브리드 능동필터)

  • Park, Han-Eol;Song, Joong-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.152-158
    • /
    • 2010
  • Generally, the AC electrified railway systems have the power quality problems that are induced from the harmonic currents and the reactive power. This paper presents a single-phase hybrid active filter adopting a SRF(synchronous-reference-frame) control for improving power quality in the AC electrified railway systems. The single-phase hybrid active filter can compensate the harmonic currents and the reactive power through the proposed SRF control algorithm. The proposed control algorithm can extract the third and fifth harmonics through the MSRF(multiple-synchronous-reference-frames) which is used to apply the three-phase systems. Therefore, the hybrid active filter can compensates only the high-frequency harmonic currents whereas the passive filter compensates the low-frequency harmonic currents. Also, the proposed SRF control algorithm can compensate the reactive power by the closed-loop control. The Validity and the effectiveness of the proposed SRF control method for the hybrid active filter are illustrated through the simulation results.

Compensation of Time Delay Using Predictive Controller (예측제어기를 이용한 시간지연 보상)

  • Heo, Hwa-Ra;Park, Jae-Han;Lee, Jang-Myeong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.2
    • /
    • pp.46-56
    • /
    • 1999
  • A predictive controller is designed based upon stochastic methods for compensation time-delay effect on a system which has inherent time-delay caused by the spatial separation between controllers and actuators. The predictive controller estimates current outputs through linear prediction methods and probability functions utilizing previous outputs, and minimizes the malicious phenomena caused by the time-delay in precision control systems. To demonstrate effectiveness of this control methodology, we applied this algorithm for the control of a tele-operated DC servomotor. The experimental results show that this predictive controller is superior to the PID controller in terms of convergence-characteristics, and show that this controller expands the maximum allowable time-delay for a system maintaining the stability. Since the proposed predictor does not require models of plants - it requires only stochastic information for outputs --, it is a general scheme which can be applied for the control of systems which are difficult to model or the compensator of PID control.

  • PDF

Design of Time-varying Sliding Surface for Higher-order Uncertain Systems (고차 불확실 시스템을 위한 시변 슬라이딩 평면의 설계)

  • Kim, Ga-Gue;Choi, Bong-Yeol
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.6
    • /
    • pp.37-44
    • /
    • 1999
  • In this paper, we present a new sliding surface with a time-varying repeated root for fast and robust tracking of higher-order uncertain systems. The repeated root is moved to target one with stabilizing the closed-loop time-varying system in sliding mode. This initial root is obtained so that shifting distance of the surface may be minimized with respect to an initial error, and the intercept is produced so that the surface may pass the initial error. Under the allowable input, fast shifting of the surface and movement of the repeated root enable the error convergence rate to be increased. The proposed sliding mode control makes the error always remain on the surface from the beginning, and therefore, the system is more insensitive to parameter uncertainties and external disturbances. In simulation, the effectiveness of the proposed method is proved by comparison with the conventional one.

  • PDF

Development of non-fragile $H_{\infty}$ controller design algorithm for singular systems (특이시스템의 비약성 $H_{\infty}$ 제어기 설계 알고리듬 개발)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.9-14
    • /
    • 2005
  • In this paper, we consider the synthesis of non-fragile $H_{\infty}$ state feedback controllers for singular systems and static state feedback controller with multiplicative uncertainty. The sufficient condition of controller existence, the design method of non-fragile $H_{\infty}$ controller, and the measure of non-fragility in controller are presented via LMI(linear matrix inequality) technique. Also, the sufficient condition can be rewritten as LMI form in terms of transformed variables through singular value decomposition, some changes of variables, and Schur complements. Therefore, the obtained non-fragile $H_{\infty}$ controller guarantees the asymptotic stability and disturbance attenuation of the closed loop singular systems within a prescribed degree. Moreover, the controller design method can be extended to the problem of robust and non-fragile $H_{\infty}$ controller design method for singular systems with parameter uncertainties. Finally, a numerical example is given to illustrate the design method.

Guaranteed Cost Control for Discrete-time Linear Uncertain Systems with Time-varying Delay (시변 시간지연을 가지는 이산 선형 불확실성 시스템에 대한 보장 비용 제어)

  • Kim, Ki-Tae;Cho, Sang-Hyun;Lee, Sang-Kyung;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.20-26
    • /
    • 2002
  • This paper deals with the guaranteed cost control problems for a class of discrete-time linear uncertain systems with time-varying delay. The uncertain systems under consideration depend on time-varying norm-bounded parameter uncertainties. We address the existence condition and the design method of the memoryless state feedback control law such that the closed loop system not only is quadratically stable but also guarantees an adequate level of performance for all admissible uncertainties. Through some changes of variables and Schur complement, It is shown that the sufficient condition can be rewritten as an LMI(linear matrix inequality) form in terms of all variables.

Adaptive self-structuring fuzzy controller of wind energy conversion systems (풍력 발전 계통의 자기 구조화 적응 퍼지 제어기 설계)

  • Park, Jang-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.151-157
    • /
    • 2013
  • This paper proposes an online adaptive fuzzy controller for a wind energy conversion system (WECS) that is intrinsically highly nonlinear plant. In real application, to obtain exact system parameters such as power coefficient, many measuring instruments and off-line implementations are required, which is very difficult to perform. This shortcoming can be avoided by introducing fuzzy system in the controller design in this paper. The proposed adaptive fuzzy control scheme using self-structuring algorithm requires no system parameters to meet control objectives. Even the structure of the fuzzy system is automatically grows on-line, which distinguishes our proposed algorithm over the previously proposed fuzzy control schemes. Combining derivative estimator for wind velocity, the whole closed-loop system is shown to be stable in the sense of Lyapunov.

An Implementation of the Controller Design System Using the Runge Kutta Method and Genetic Algorithms (런지-커타 기법과 유전자 알고리즘을 이용한 제어기 설계 시스템의 구현)

  • Lee, Chung-Ki;Kang, Hwan-Il;Yu, Il-Kyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.259-259
    • /
    • 2003
  • Genetic algorithms using a Process of genetic evolution of an organism are appropriate for hard problems that have not been solved by any deterministic method. Up to now, the controller design method has been made with the frequency dependent specification but the design method with the time specification has gotten little progress. In this paper, we study the controller design to satisfy the performance of a plant using the generalized Manabe standard form. When dealing with a controller design in the case of two parameter configurations, there are some situations that neither a known pseudo inverse technique nor the inverse method can be applicable. In this case, we propose two methods of designing a controller by the gradient algorithm and the new pseudo inverse method so that the desired closed polynomials are either equalized to or approximated to the designed polynomial. Design methods of the proposed controller are implemented in Java.

A High-Performance Position Sensorless Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 위치검출기 없는 리럭턴스 동기전동기의 고성능 제어시스템)

  • 김민회;김남훈;백원식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.81-90
    • /
    • 2002
  • This paper presents an Implementation of digital high-performance position sensorless control system of Reluctance Synchronous Motor(RSM) drives with Direct Torque Control(DTC). The system consists of stator flux observer, speed and torque estimator, two digital hysteresis controllers, an optimal switching look-up table, Insulated Gate Bipolar Transistor(IGBT) voltage source inverter, and TMS320C31 DSP board. The stator flux observer Is based on the combined voltage and current model with stator flux feedback adaptive control of which inputs are current and voltage sensed on motor terminal for wide speed range. In order to prove the suggested sensorless control algorithm for industrial field application, we have some simulation and actual experiment at low and high speed range. The developed high-performance speed control by fully digital system are shown a good response characteristic of control results and high performance features using 1.0[kW] RSM having 2.57 reluctance ratio of $L_d/L_q$.