• Title/Summary/Keyword: 평면 기하적 변수

Search Result 26, Processing Time 0.022 seconds

Spatial Distribution Patterns and Planar Geometric Characteristics of Vegetated Bars in the Naesungcheon Stream (내성천 식생사주의 공간적 분포 유형과 평면 기하 특성)

  • Jiwon Ryu;Eun-kyung Jang;Un Ji
    • Ecology and Resilient Infrastructure
    • /
    • v.11 no.3
    • /
    • pp.90-99
    • /
    • 2024
  • This study classified spatial distribution patterns of vegetated bars in the Naesungcheon Stream, defined universally applicable planar geometric variables, and quantified characteristics of dominant vegetated bar distribution forms. The analysis identified four primary types of spatial distribution, with two types (vegetated alternate/point bars and vegetated floodplains with single or multi-vegetated bars) accounting for more than 90% of the study area. Study results indicated that relatively large vegetated bars tended to be widely spaced or distributed in combination with multiple smaller vegetated bars that were overlapped in the Naesungcheon stream. Quantified spatial distribution characteristics of vegetated bars derived from this study could be used as essential basis information for vegetation management in rivers similar to the Naesungcheon Stream. Additionally, analysis results for planar geometric variables and spatial distribution forms are expected to facilitate experimental designs that mimic river conditions in flood management and ecohydraulic studies, contributing to the interpretation of complex characteristics of interactions between vegetated bars, flow, and bed changes.

A Development of Numerical Method for Bifurcational Bucklingof the Spatial Structures (공간구조물의 분기좌굴해석이론의 개발)

  • Lee, Kyung-Soo;Han, Sang-Eul;Lee, Jae-Young;Kim, Man-Jung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.496-499
    • /
    • 2009
  • 본 논문은 기하학적 비선형성을 가진 보존적 단일 하중 매개변수의 탄성 상태 공간구조의 분기이론에 관한 수치 해석적 기본 방법 및 경로 추적, pin-pointing, 경로 전환을 기술하고 있다. 비선형 탄성 불안정 상태는 극한점과 분기점으로 분류될 수 있으며, 평형경로상의 평형점의 계산 및 평형경로상의 특이점을 찾기 위한 pin-pointing 반복계산을 수행하는 일반적인 비선형 수치해석법으로 극한점을 계산할 수 있다. 그러나 분기좌굴 해석을 위해서는 좌굴 후 분기경로의 추적을 위한 분기경로 전환 알고리즘이 추가적으로 필요하다. 본문에서는 에너지이론에 기초한 일반 탄성안정이론을 소개하고, 평형경로 추적, 분기 좌굴점을 찾기 위한 직접법과 분기경로 전환에 관한 이론을 전개한다. 분기좌굴 해석예제로 트러스로 이루어진 스타돔, 핀지지의 평면아치, 평면프레임, 3차원 공간프레임의 분기좌굴 해석을 수행하여 본문에서 제시한 수치해석법의 정확성 및 실용성을 검증한다.

  • PDF

A FEM analysis on the Bond Properties of High Strength Concrete (고강도콘크리트의 부착특성에 관한 유한요소해석)

  • 홍건호
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.3
    • /
    • pp.175-183
    • /
    • 1998
  • 고강도콘크리트의 역학적 특성은 그 압축강도의 증가 이외에도 여러 가지 변화를 갖게 된다. 본 연구에서는 이와 같은 여러 특성의 변화 중 철근과의 부착특성에 관한 해석적 접근을 통하여 고강도콘크리트부재의 부착설계를 위한 이론적인 접근을 시도하였다. 해석의 변수로는 콘크리트의 압축강도, 부착길이 및 피복두께 등 3가지의 변수를 선정하였으며, 해석의 목적은 본 연구에 앞서 실시된 실험의 결과를 예측할 수 있는 단순화된 모델을 개발하고 이를 이용하여 부착실험의 결과를 해석적으로 분석하도록 하였다. 이에 따라 사용된모델은 실험에서 사용한 보단부형 부착시험체의철근과 콘크리트 부착부분의 기하학적 형상을 비교적 실제와 유사하게 모델링시킨 2차원의 평면모델을 사용하였다. 본 연구의 주요결과를 살펴보면 고강도콘크리트의 부착강도는 콘크리트의 피복두께에는 선형으로 비례하게 되나 부착길에는 비례하지 않는 것으로 나타났다. 이와 같은 결고는 기존의 실험결과와도일치하고있으며, 그 원인은 콘크리트의 강성증가에 따라 하중단측에 응력이 집중됨으로써 보통강도콘크리트의 경우와 같이 응력의 균등한 배분을 기대할 수 없기 때문으로 나타났다.

On the analysis and correction of error for the simultaneous inequality with two unknown quantities (미지수가 2개인 연립일차부등식의 문제해결과정에서 발생하는 오류 분석 및 지도방안 연구)

  • Jun, Young-Bae;Roh, Eun-Hwan;Kim, Dae-Eui;Jung, Chan-Sik;Kim, Chang-Su;Kang, Jeong-Gi;Jung, Sang-Tae
    • Communications of Mathematical Education
    • /
    • v.24 no.3
    • /
    • pp.543-562
    • /
    • 2010
  • The purpose of this thesis is to analyze the error happening in the process of solving the simultaneous inequality with two unknown qualities and to propose the correct teaching method. We first introduce a problem about the simultaneous inequality with two unknown qualities. And we will see the solution which a student offers. Finally we propose the correct teaching method by analyzing the error happening in the process of solving the simultaneous inequality with two unknown qualities. The cause of the error are a wrong conception which started with the process of solving the simultaneous equality with two unknown qualities and an insufficient curriculum in connection with the simultaneous inequality with two unknown qualities. Especially we can find out the problem that the students don't look the interrelation between two valuables when they solve the simultaneous inequality with two unknown qualities. Therefore we insist that we must teach students looking the interrelation between two valuables when they solve the simultaneous inequality with two unknown qualities.

Determination of the Boundary of Parameters for Stabilization of Truss Structures Stabilized by Cable Tension (장력안정트러스 구조물의 안정화를 위한 매개변수의 범위 결정에 관한 연구)

  • 권택진;한상을;최옥훈
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.195-202
    • /
    • 1997
  • The charateristics of stabilization for stabilized truss unit-structures with cable and truss are investigated in this paper. This unit system is composed of a central post and eight cables, and is connected by hinge joints, and stabilized by self-equilibrated stress field. As this unit structure itself is a statically closed and stabilized system individually, it can be employed to assemble structures with various configurations. In this study, for stabilization of truss structures stabilized by cable tension, the structural concept of unit structures, the range of various geometrical parameters and the relationship of governing parameters about unit systems are explained.

  • PDF

A Bifurcation Analysis of Space Structures by Using 3D Beam-Column Element Considering Finite Deformations and Bowing Effect (유한변형과 굽힘효과가 고려된 3차원 보-기둥요소에 의한 공간구조물의 분기좌굴해석)

  • Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.307-314
    • /
    • 2009
  • The present paper briefly describes the space frame element and the fundamental strategies in computational elastic bifurcation theory of geometrically nonlinear, single load parameter conservative elastic spatial structures. A method for large deformation(rotation) analysis of space frame is based on an eulerian formulation, which takes into consideration the effects of large joint translations and rotations with finite deformation(rotation). The local member force-deformation relationships are based on the beam-column approach, and the change in member chord lengths caused by axial strain and flexural bowing are taken into account. and the derived geometric stiffness matrix is unsymmetric because of the fact that finite rotations are not commutative under addition. To detect the singular point such as bifurcation point, an iterative pin-pointing algorithm is proposed. And the path switching mode for bifurcation path is based on the non-negative eigen-value and it's corresponding eigen-vector. Some numerical examples for bifurcation analysis are carried out for a plane frame, plane circular arch and space dome structures are described.

Prediction of Residual Stresses in Injection Molded Parts considering packing and cooling Stages (보압과 냉각 과정을 사출성형 제품의 잔류 응력 예측)

  • 윤재륜
    • The Korean Journal of Rheology
    • /
    • v.9 no.1
    • /
    • pp.16-26
    • /
    • 1997
  • 사출 성형된 제품에서 발생하는 잔류응력은 최종 제춤의 기하학적 정밀도와 기계적 성질 및 열적 성질에 영향을 미친다. 사출성형된 제품의 잔류응력을 예측하기 위해서는 먼 저 열 및 유동장의 해석을 수행하여야 하고이를 위해서는 사출 성형의 세단계. 즉 충전, 보 압, 냉각을 모두고려해야한다. 검사체적 방법에 기초한 혼합 유한요소/유한차분방법을 사용 하는 수치 해석적 기법에 의하여 충전과정가 후충전 과정의 유동장 해서을 수행하였다. 일 반화된 헬레쇼 유동을 가정하였고 보압과 냉각과정시의 고본자의 압축성을 고려하였다. 점 도의 전단 변형률의 크기와 온도에 대한 의존성은 개선된 크로스 모델을 사용하여 나타내었 다. Tait에 의해 제안된 상태방정식은 고분자의 온도, 압력, 부피의 상호관계를 묘사하는 좋 은 방법을 제공하였다. 유동해석을 통하여 전 공정에 걸쳐서 온도와 압\ulcorner장의 변화에 대한 데이터를 얻었고 제품의 고체 응력해석의 입력 데이터로 사용하였다. 유한요소응력해석에는 평면 응력요소를 사용하였다. 다양한 형태의 금형에 대해서 공정 변수들을 달리하여 유동장 의 해석과 잔류응력의 계산을 수행하였다. 이로부터 공정조건과 유동장의 관계를 밝히고 최 종 제춤의 잔류 응력에의 영향을 고찰하였다.

  • PDF

Review of the Application of the First-Order Reliability Methods to Safety Assessment of Structures (1차 신뢰성 해석법의 구조적 안전성평가에의 적용에 관한 재고)

  • Joo-Sung Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.195-206
    • /
    • 1991
  • This paper is concerned with comparison of the first-order reliability methods applied to the assessment of structural safety. For convenience the reliability methods are divided into two categories : the One can explicitly consider the effects of uncertainties in material and geometric variables on those of load effects, say stresses and displacement in the structural analysis procedure and the other one does not. The first method is commonly termed as the stochastic finite element method(SFEM) or probabilistic finite element method(PFEM) and the second method is termed heroin as the ordinary reliability method to distinct it from the stochastic finite element method in which the structural analysis is carried out just once and the load effects are directly input into the reliability analysis procedure. This is based on the reasonable assumption that the level of uncertainties of load effects is the same as those of load itself. In this paper the above two different reliability method have been applied to the safety assessment of plane frame structures and compared thier results from the view point of their efficiency and usefulness. As lear as results of the present structure models are concerned, it can be said that the ordinary reliability method can give reasonable results when the uncertainties of material and geometric variables are comparatively small, say when less than about 15% and the stochastic finite element method is desired to be applied to the structure in which the COV's are comparatively great, say when greater than about 15%.

  • PDF

In-Plane Extensional Vibration Analysis of Asymmetric Curved Beams with Linearly Varying Cross-Section Using DQM (미분구적법(DQM)을 이용한 단면적이 선형적으로 변하는 비대칭 곡선보의 내평면 신장 진동해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.612-620
    • /
    • 2019
  • The increasing use of curved beams in buildings, vehicles, ships, and aircraft has results in considerable effort being directed toward developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic curved beams has been the subject of a large number of investigations. Solutions of the relevant differential equations have traditionally been obtained by the standard finite difference. These techniques require a great deal of computer time as the number of discrete nodes becomes relatively large under conditions of complex geometry and loading. One of the efficient procedures for the solution of partial differential equations is the method of differential quadrature. The differential quadrature method(DQM) has been applied to a large number of cases to overcome the difficulties of the complex algorithms of programming for the computer, as well as excessive use of storage due to conditions of complex geometry and loading. In this study, the in-plane extensional vibration for asymmetric curved beams with linearly varying cross-section is analyzed using the DQM. Fundamental frequency parameters are calculated for the member with various parameter ratios, boundary conditions, and opening angles. The results are compared with the result by other methods for cases in which they are available. According to the analysis of the solutions, the DQM, used only a limited number of grid points, gives results which agree very well with the exact ones.

Behavior of Curved Pipes under In-Plane Bending (면내굽힘에서 곡선배관의 거동특성)

  • Lee, Sang-Ho;Song, Hyeon-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.480-486
    • /
    • 2008
  • The pipe elbows subjected to in-plane bending moments are analyzed with the finite element method. The results from the finite element analysis are compared with ASME code equations that are theoretical closed form solutions. The geometric nonlinear effects due to the ovalization are explained with the magnitude and the types of the stresses and the flexibilities of the elbows with the emphasis on the bend angles and elbow factors.