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Abstract

This paper is concerned with comparison of the first-order reliability methods applied to the assess-
ment of structural safety. For convenience the reliability methods are divided into two categories . the
One can explicitly consider the effects of uncertainties in material and geometric variables on those of
load effects, say stresses and displacement in the structural analysis procedure and the other one does
not. The first method is commonly termed as the stochastic finite element method (SFEM) or probabilis-
tic finite element method (PFEM) and the second method is termed herein as the ordinary reliabilty
method to distinct it from the stochastic finite element method in which the structural analysis is car-
ried out just once and the load effects are directly input into the reliability analysis procedure. This is
based on the reasonable assumption that the level of uncertainties of load effects is the same as those of
load itself.

In this paper the above two different reliability method have been applied to the safety assessment of
plane frame structures and compared thier results from the view point of their efficiency and useful-
ness. As far as results of the present structure models are concerned, it can be said that the ordinary
reliability method can give reasonable results when the uncertainties of material and geometric varia-
bles are comparatively small, say when less than about 15% and the stochastic finite element method 1s
desired to be applied to the structure in which the COV’s are comparatively great, say when greater
than about 15%.
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1. Intorduction

During the last decade a general framework
for the reliabihty assessment of structural
systems has been well established and it is ma-
tured to apply the method to the design of real
structures. Some codes for structural design
have been already developed based on reliability
analysis[1]. The frontier work in this field can
be found in the work by Pugsley applied to air-
craft structure[2]. Since then many works have
been carried out. Some are concerned with the
development of the methods for reliability anal-
ysis[3-15] and some are concerened with its ap-
plication to structural reliability analysis and its
application to design[16-21]. These two sides
have been emphasised in parallel. At these days
with regard to the methods for reliability analy-
sis the advanced first-order reliability method
(AFORM) is well accepted in assessing struc-
tural safety and its based design (especially in
the most steel structures). The second-order re-
liability method, of course may gives a closer so-

lution of reliability to the true solution but not
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all cases.

This is not the place to go into details of re-
viewing the state-of the-art in the field of relia-
bility analysis and its application to design. This
paper places an emphasis on comparison be-
tween the ordinary reliability method and the
stochastic finite element method (SFEM). In
this the ordinary reliability method is such that
in applying the method the structural analysis
procedure is carried out just once and its load
effects, say stresses and displacement, are di-
rectly input in the reliability analysis procedure.
The effect of the variation of material and geo-
metric variables on the variation of load effects
are, hence, disregarded in the structural analy-
sis and so the level of uncertainties of load ef-
fects 1s assumed to be the same as that of load
itself. This approach is commonly employed at
present in reliability assessment due to its sim-
plicity. When the variation of material and geo-
metric variables are considerably great the
result by this method may be, however, well

outside the true solution. This seems to be only
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one major limitation of this method. To over-
come this problem SFEM has been proposed. In
this approach the general procedure of the ordi-
nary reliability method is to be, of course, fol-
lowed and the structural analysis is repeated to
get the sensitivities of basic variables. And so
theis approach can more explicitly account for
the effect of uncertainties in material and geo-
metric variables and may give a closer solution
to true solution than the ordinary reliability
method. One of major shoricomings is that a
great amount of computational efforts is re-
quired since the structural analysis should be re-
peated many times to get the gradient of limit
state equation (safety margin) to all basic vari-
ables (at every iteration steps when iterative
method is used).

In this paper the above two different ap-
proaches are compared from the view point of
their efficiency in applying to assessment of

structural reliability in component level.
2. Formulation of Reliability Methods

2.1 Ordinary Reliability Method :
Advanced First-Order Reliability Method

Several methods are available for computing
failure probability and reliability index. When
the limit state equation has a general form of
non-linear equation and basic variables are non-
normally distributed, the algorithm proposed by
Rackwitz and Fiessles[6] is well accepted which
is an extension of Hasofer-Lind[5]. This algo-
rithm is often called advanced first-order second
moment reliability method (AFORM). Follow-
ing briefly describes its formulation procedure.

The limit state equation (for safety margin)

is In general of the form !

FEEAE AR E F28% 29 19914 108

Z:g(}’):(y“}’z,---,}’n) (1)
where y,(1=1,2,....,n)are n reduced variables of
basic design variables, x(i=1,2,...,n) as basic

independent random variables defined as :

yi=(x.—§.)/a){l (2)
where x, and g, are mean and standard devia-
- i

tion of variable x. Function, g, 1s some given
non-inear function and describes the structural
behaviour such that for g>>0 safe state is de-
fined whereas g<0 corresponding to failure,
and failure state is given by g=0. Expand Eq.
(1) in linear Taylor series which should equal

zero, if the limit state criterion is fulfilled :

*  * * LA *
g8y, ¥y sk, ) § gl,(yr};) =0 (3

where g, is partial derivative of function g
with respect to y, evaluated at the unknown
point, y*={y,"¥2",eso }. The problem is to find
the point, y°, where the distance from origin of
the reduced space to the failure surface, 8 be-
comes minimal. According to the first order reli-
ability theory the limit state criterion is only ful-
filled if the point lLies on the failure surface.
When such a point Is found, the corresponding
variable, x*, can be obtained from :

yi':zi—a/i/)’(fy1 (4)

where @, is referred to as the sensitivity factor
as defined in Eq.(6), which represent the rela-
tive importance of basic design variables. The
point y" is usually obtained by the following ite-
ration algorthm(6].

In general, at the (j+1)th iteration with the
assumed point of y? obtained at the jth itera-
tion.

Step 1 : Evaluate the partial derivatives to ran-
dom varnable, yi gi? (=1,n) at the

current design point,y'? .
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w _ dg({y"”})
g, = dy. (5)

Step 2 : Evaluate the sensitivity factor for all y,
{@"}, given by :

. £,y
) i

@, = e (6)
/& ) y
i=] <gl ' GXI' )L

Step 3 : Calculate the new point for the next ite-

ration :
y(rH) — <{y(1)}'l‘{a<;)}>a(1)

gly")

T
R %,

Step 4 : Calculate the reliability index :
B(,-H): {y(;+|}| (8)

e} (7)

Step 5 : Evaluate the design point :

X.‘l+l):Y_l_al(])ﬂ‘ﬁ”o‘y' (9)
H

Step 6 : Check the convergence :
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and

’ﬂ(J‘I) _B(J)'
B(J)

where ¢ is a prescribed small number as toler-

<e (10)

ance.

The above procedure will be continued until
convergence criteria are satisfied. The failure
probability is :

P=P<0)=0(—-48) (11)
For the non-normal variable, its mean and stan-
dard deviation in Eq.(2) are replaced by the
equivalent mean and standard deviation ob-

tained from the following[5,7] .

X %\ .
] T —in (Xi ) (12.a)
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1 x" - x .
-<—’—;——'—):in (x") (12b)
xi
were x; is the approximation point, F(+) and f
(+) the distribution function and density func-
tion of the non-normal distribution, respectively,
and @(-) and ¢(-) the standard normal distri-
bution and density functions, respectively,
which has the effect of equating the cumulative
probabilities of the probability densities of the
actural and approximating normal distributions
at the design point x,". The solutions of Eqgs.(12.
a) and (12.b) are:

v SLoE ]
% T (k)

xl.Nle.* -0, O '{F, (xl.*)} (13)

N N .
X, and o, are the mean and standard dewvia-

1
tion of the equivalent distribution. This approxi-
mation may become more and more inaccurate
if the original distribution becomes increas ingly

skewed.

2.2 Stochastic Finite Element Method

As mentioned in Section 1 the apparent dif-
ference of the stochastic finite element method
from the ordinary reliability method is that un-
certainties in material and geometric variables
can be explicityly accounted for. A few algo-
rithms have been proposed[11-157]. Reference 22
well summarise the state-of-the-art in this area.
In this paper the algorithm proposed by
Kiureghian and Taylor{15] 1s employed in
which an essential point is to find the partial de-
rivatives of limit state equation to random vari-
ables. Let divide the random variables into two
groups . resistance variables {r} and load varia-

bles {q}, that is, random variables are
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{x} = ({r}{a})) (14)
and the limit state equation is expressed In
terms of original variables as :

g({x}) = g({r},{a}) (15)
Using the displacement method of structural
analysis for a linear system of N degrees of
freedom the stiffness equation is given as :

[KJ{U} = {F} (16)
where [K] is the stiffness matrix of a total
structural system. {U} and {F} are nodal dis-
placement and nodal force vectors, respectively.
The elements of [K] in general contains such
random variables as material and geometric
properties and the vector {F} contains geomet-
ric properties and the applied loads. It is clear
that [K] and {F} are random and hence {U}
would be also random. For a linear structural
system the load effects {q} would be stress at
elements or nodal isplacement. For a component
considered now the load effect i1s obtained
form :

{a} = [B]{u"} (17)
in which superscript (e) is the element which
contains the component considered now and ma-
trix [B] is the load effect-nodal displacement
reation matrix and of which elements are func-
tions of material and geometric properties.

At the current design point {x*} the limit
state equation is g({x*})=g({r*}, {q*}) where
{r*} is explicitly known in terms of {x*} and
{g*} is given using Eqs(16) and (17) as :

(q*)=[BI"((KI{F)H ', (18)
X=X

in which the curled bracket of vectors {x} and
{x'} are omitted. Superscript (e) is added to de-
note that the nodal displacement vector is that
of to element (e) with is sorted out using ele-
ment togpology data (as well known). The par-

tial derivatives of limit state equation (15) to

REERSERCE B28E 23 19914 10A

random variables is given by :

dfk
(48 =1y

+ 3 }T{dq“}]‘ . (19)

ll Q

All terms can be easily calculated except the
term of {dq,/dx}. Using Eq.(18) the derivative

is given as follow :

(L = [{j—?}T{um}

HBT (G2 e = (B (o)
w01 (py 4 g dELy e, a0
It is easily shown that

dK]™" .d[K] |

-y en
Then Eq (20) becomes
{ }x x —[{ }“{u(”)}**[B]1

(K] (- dg? W+ 4o @

where {U} is obtained from Eq.(16) at the cur-
rent design points.

After calculating partial derivative {dq,/dx,}
from Eq.(22) the partial derivative of Eq.(19)
1s completely calculated. Once obtaining the par-
tial derivatives of limit state equation the itera-
tive procedure described in the previous section
can work.

The above formulation of the stochastic finite
element method has a merit that the available
computer code for the ordinary reliability analy-

sis can be used without much modification.
3. Numerical Examples

3.1 Portal Frame Structure
A simple portal frame model shown in Fig.1
is selected to see the efficiency of the ordinary

reliability method and the stochastic finite ele-
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ment method in evaluating the reliability. The
model has 4 beam elements and 5 nodes. Both
nodes of an element are treated as components.
Component failure is assumed to occur when
bending moment at a particular element end
reaches the plastic bending moment. The limit
state equation is simply given by :

g{rg)=r—q (23)
and r is the plastic bending moment as strength
and q is the applied bending moment. Required
data are listed in Table 1. All variables are as-
sumed to be normally distributed and statistical-
ly independent. For each component there are 8
variabes. In the stochastic finite element analy-
sis, the structural analysis procedure is repeated
many times., After the first iteration the varia-
ble of which sensitivity factor given by Eq.(6)

1s less than &, is treated as a deterministic vari-

able from the second iteration to reduce compu-

tational time. €, is a small number. Doing this

1s expected not to affect the result. For illustra-

tion Table 2 compares the results of Component

Table 1 Data for Portal Frame Model

comp. A (x107%)  L(x10%) R
1,2 4.0 3.58 0.075
3,4 4.0 4.77 0.101
5,6 4.0 4.77 0.101
7,8 4.0 3.58 0.075

Ay = cross sectional area (m?)

I, = moment of inertia (m*)
mean yield stress = 276MPa

Ry =Mean strength (=plastic bending
moment, MN)

P=0.02 MN, P® = 0.04 MN

COV of Rk =0.05

COV of PV and P®=0.3

Joo—Sung Lee

Table 2 Reliability Analysis Result for
Component 7 of Portal Frame

Model
(1) when e = 0

variable design point a

R, 0.7364E-01 0.2770

E 0.2100E+06  0.2506E-03

A, 0.400E-02  —0.9939E-04

N 0.3677E-04  —0.1038
0.4001E02  —0.1306E-02

A 0.4631E-04 0.1112

p® 0.2343E01  —0.4373

P 0.5319E-01  —0.8419

8 = 1.306
. = 0.0958

No.of iteration = 25

(2) when g, = 0.01

variable design point a

R; 0.7364E-01 0.2770
E 0.2100E+086 0.0000
A 0.400ED2 0.0000
I, 0.3677E-04 —0.1038
A, 0.4001E-02 0.0000
I, 0.4631E-04 0.1112
po 0.2343E-01 —0.4373
pP® 0.5319E-01 —0.8419

B =1.306

P; = 0.0958

No. of iteration = 5
(Note) A, Ii=A & I of Components 1, 2, 7, 8
A, L=A & I of Components 3, 4,5, 6

7 in Fig.1 when €, =0 and 0.01, respectively

and when COV of material and geometric varia-
bles, say E, A and I, is 20%. We can see that
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Fig. 1 Portal Frame Model
treating the variables of which sensitivity factor

are less than €, of =0.01 does not affect the

result.

For most steel structures the COV of elastic
modulus and geometric properties, e.g., E, A
and I of the model in Fig.1l, is comparatively
smaller than that of load effect and usually
have the value raging 4 to 8%. To see the ef-
fect of variation of such variables on safety
level, reliabil ity indices of 7 Components in Fig.
1 (Component 5 is the same as Component 4)
are evaluated with varying the COV from 4 to
20%. Table 3 shows results by the ordinary reli-
ability method and the stochastic finite element
method When applying the ordinary reliability
method the limit state equation is given by :

g(r,g) =r~(q"V+q"®) (24)
in which ¢V and q® are bending moments due
to load P, and P,, respectively. From Table 3 it
would not found appreciable difference of relia-
bility indices when COV of material and geo-
metric properties are less than 10% and even
when it 1s 15%. When the COV is 20% the dif-
ference between two methods lies 3 to 8% for
this model and the stochastic finite element
method gives smaller reliability indices than the
ordinary reliability method which can be easily

expected.

REEMAERICE £28% 23 19914 10H

Table 3 Reliability Indices to Changes in
COVs of E, A and | of Portal Frame
Model

by stochastic finite element method
COV- =10.04 0.10 0.15 0.20

comp.| by ORM*

1 5.647 5.641 5.612 5.564 5.485
2 4.331 4.313 4.230 4.125 4.000
3 6.093 6.064 5.928 5.763 5.565
4(5); 1.979 1.978 1.968 1.954 1.934
6 3.179 3.175 3.159 3.138 3.113
7 1.322 1.322 1318 1313 1.306

8 2.349 2.344 2.321 2.287 2.243

* : ORM = ordinary reliability method
COV* = COV of materia] and geometric properties

3.2 Building Structure
As a reinforced concrete strucutre (RC struc-
ture) model, a 5 story-3 bay building shown in
Fig.2 is considered[23]. As it well recognised
the variation of material and geometric proper-
ties of RC structures are comparatively greater
than steel structures. Data for reliability analy-
sis of this model are listed in Table 4. The limit
state equation concerns the reliability of ele-
ment 1-) of the model (see Fig.2). A node i is
taken here which is under the combined axial
force and bending moment. For the purpose of
illustration the equation given by Eq.(25) is
taken as Reference 23 :
g((x)) =1 -4
F3

B B
Ly R2[1 i Aa]

where F, is the axial force and F, is the bending

(25)

moment at node i. Results by the stochastic fi-
nite element analysis illustrated in Table 5 with
e =0.01

a

As seen in Table 4 distributed loads W, W,
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Table 4 Data for Reliability Analysis of 5 Story Table 5 Result of Reliability Analysis for
—4 Bay Building (after Reference 23): Building by Stochastic Finite Ele—
unit—Kips, ft ment Analysis (after Reference 23):
(e,=0.01)
variable = mean COV dist.type variable  design point a

W, 6.00  0.18  log-normal W, 6.35 ~0.162

W, 750  0.18  lognormal W, 7.99 —2.00

W, 800  0.18  log-normal W, 8.46 —0.163

P, 225 0.40.  extreme typel P, 27.9 —0.381

P, 20.0 040  extreme typel P, 24.0 —-0.116

P, 16.0  0.40  extreme type-l P, 17.9 —0.086

E, 454.0  0.09  normal E, 454.0 —0.023

E. 497.0 0.08  normal E, 497.0 0.021

I, 0.94 0.12  normal I 0.92 -

I, 1.33  0.12  normal I, 1.30 0.038

I, 2.47  0.12  normal I, 1.92 0.270

I, 1.25 0.24 normal I, 1.25 0.267

I, 1.63  0.24  normal Is 2.34 0.114

I, 269 012  normal I 2.62 —0.080

A, 3.36 0.18  normal Ay 3.24 -

A, 400 018  normal A, 3.82 -

A 5.44 0.18  normal A,y 3.57 ~0.735

A, 2.72 033 normal A, 2.52 -

As 3.13 0.33 normal As 2.92 —

A 4.01 0.33  normal As 3.87 0.012

R, 7000 0.14  log-normal R, 562.0 0.283

R. 500.0 0.10  log-normal R, 432.0 0.187

R, 1400.0 0.11  lognormal R, 1200.0 0.064
8 =220
P, = 0.0138

and W; have the same probabilistic characteris- . ,
. X No. of iteration = 4
tics except mean values and this also works for

the concentrated loads P,, P, and P;. The load (25) as:
cases can be hence grouped into two cases : glix]) =1 — LF_;“%»F;Z))
Load case 1 : distributed loads W,, W,, and W, As R,
Load case 2 : concentrated loads P,, P,, and P; P’3(”+F3< »
In the ordinary reliability analysis the limit AFZ“)+F2‘_2’_ (26)
state equation can be expressed referring to Ex. LR, [G—R}T—%]
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Fig. 2 5 Story-3 Bay Building (after Reference 23)

in which superscript (1) and (2) are refer to
the load effects due to lLoad case 1 and 2,
respectively. Table 6 shows the results by the
stochastic finite element method and by the or-
dinary reliability method (AFORM).

Comparing results in Tables 5 and 6 the sto-
chastic finite element method gives 20% smaller
rehability index and the ordinary reliability
method. This greater difference by the two
methods than the protal frame model in Fig.1
may be due to that the larger values of COV's
of sectional area and moment of inertia much
pull down the rehability in the the stochastic fi-
nite element analysis. When COV's of elastic
modulus, sectional area and moment of intertia
are uniformly given as 10%, the stochastic fi-
nite element method gives reliability index of 2.
57. This value is 6% smaller than by the ordi-
nary reliabilty method. Table 7 summarises

results for building.

NESERS e cE H28%  25F 19914 108

Table 6 Data and Result of Reliability Analysis
for Buliding by Ordinary Reliability
Method (AFORM)
variable mean COV dist. type design point ']
R, 700.0 0.14 Jog-normal 628.4 0.257
R, 500.0 0.0 Jog-normal 475.6 0.165
R, 14000 0.11 log-normal 1368.0 0.057
A, 5.44 0.18 normal 3.78 0.611
1, 2.47 012 normal 2.30 0.213
F» 10358 0.14 log-normal 1257.0 —0.428
Fym 5191 0.18 logmnormal 52.09 —0.040
| 1.04 040 extreme typel 0.97 —0.001
F,® 204.9 040 extreme typel 339.1 0.548
B =274
P; = 0.303E-02

No. of iteration = 15

Table 7 Summary of Reliability Analysis for

Building
by stochastic finite element method
by ORM*
cov-1+ COoV-II!
£12.74 2.20 2.57
P 0.303E-02 0.0138 0.508E-02

ORM* = ordinary reliability method
COV-I*' = COV values of E,A and I in Table 4
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3.3 Discussion

From results of the last two sections it can be
said that the ordinary reliability method can
provide the acceptable solution of structural re-
hiability when the variation of material and geo-
metric properties is comparatively small, that is,
when they have COV of up to 10% and even up
to 15% for a simple structure and with in this
range of COV the the stochastic finite element
method does not have its merit any more since
1t is computationally very expensive due to the
repeated structural analysis tens of many times
to get the derivatives of limit state equation to
random variables. And so it is desirable to
apply the stochastic finite element method to
the cases of structures in which COVs of geo-
metric properties and especially COVs of mate-
rial properties are comparatively great. RC
structures, soill structures, rock structures and
so on may be good condidates. Another feasible
area of its application may be the system relia-
bility analysis of a structure with considering
the post-ultimate behaviour. The post-uttimate
behaviour can be characterised by the post-ulti-
mate slope, # and the residual strength parame-
ter, » as shown in Fig.3 As it is well appreciat-
ed the post-ultimate behaviour very much influ-

ences the system residual strength and conse-

1o DUCTILE -L---A---- _____

1.0 1.0 '
1]
]
13
! SEMI-BRITTLE
]
[ ]
' n

) BRITILE*

n

10 E. ]_b £
(a) two-state mode

J

b o o

(b) three-state model
Fig. 3 Typical Model Post-Ultimate Behaviour
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quently the system reliability. There may be suf-
ficiently great uncertainties in the post-ultimate
slope and the residual strenght parameter and
hence they should likely be treated as random
variables. And then the stochastic finite element
method can efficiently evaluate the system reli-
ability. A work is in progress now on by the
present author and will be presented at the

forthcoming conference[24].

4. Conclusions

The present paper has concerend with com-
parison of methods for structural reliability
analysis : the ordinary reliability method and
the stochastic finite element method. Formula-
tion of a kind of the stochastic finite element
analysis is illustrated. The two methods have
been applied to plane structures. As far as the
present numerical results are concerened, when
COVs of geometric and material properties are
less than 10 to 15%, there is not much differ-
ence of reliability indices by the ordinary relia-
bility method and the stochastic finite element
method. The later of course always gives the
smaller reliability indices. When the COVs are
lager than 10 to 15%, the two methods shows
appreciable difference.

Based on the present numerical studies,
although the ordinary rehability method always
gives the higer reliability indices than the sto-
chastic finite element method with can provide
the closer solution of reliability to truer one, em-
ploying the ordinary reliability method is suffi-
cient in evaluating the structural reliability
when the variation of material and geometric
properties are comparatively small (say less
than 10% and even less than 15%) and hence

the stochastic finite element method seems to be
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computationally less efficient than the ordinary
reliability method since the method usually re-
quires the structural analysis repeated many
times. It would be, therefore, recommmended
that the stochastic finite element method should
likely be applied to the structures in which the
variation of material and geometric properties
are comparatively great, e.g. application to RC,
soil and rock structures, and to the reliability

analysis of structural system.
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