• Title/Summary/Keyword: 펄스파

Search Result 417, Processing Time 0.021 seconds

ETS Sampler design for borehole radar receiver using 4 different clock phases (위상이 다른 4개의 클럭을 이용한 시추공 레이다 수신기용 ETS 샘플러 설계)

  • Yoo, Young-jae;Oh, Chaegon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.680-687
    • /
    • 2018
  • Borehole radar is a radar used for underground resources and geological exploration purposes. It needs a high-speed sampler to transmit electromagnetic waves with a pulse width of several ns and to receive reflected waves of several tens to several hundreds of MHz reflected from the object to be surveyed. ETS (Equivalent-Time Sampling), which can achieve sampling performance of several GHz with a sampling frequency of several tens of MHz, is suitable for use as a sampler of a borehole radar receiver. In this paper, we propose a method to control the sampling clock delay, which is the most important factor in ETS sampler design, using four clocks with phase difference of $90^{\circ}$ for one clock source. The proposed method can reduce the time required to acquire the data within the set interval by 1/25 than the conventional method using the delay generator. When the implemented sampler is applied to the receiver of existing borehole radar, it is possible to accumulate 58 additional times due to the shortened sampling time. In addition, by using one delay control logic compared with the conventional method using several sampling clock delay control logic in order to satisfy the target sampling range, it is possible to omit the correction process which was necessary in the past. As a result, the structure of the system can be simplified and a uniform sampler can be realized.

A Study on THz Generation and Detection Characteristics of InGaAs Semiconductor Epilayers (InGaAs 반도체 박막의 테라헤르쯔(THz) 발생 및 검출 특성 연구)

  • Park, D.W.;Kim, J.S.;Noh, S.K.;Ji, Young-Bin;Jeon, T.I.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.5
    • /
    • pp.264-272
    • /
    • 2012
  • In this paper, we report THz generation and detection characteristics investigated by InGaAs semiconductor epilayers, as results of a basic study obtained from the InGaAs-based THz transmitter/receiver (Tx/Rx). High-temperature and low-temperature (LT) grown InGaAs epilayers were prepared by the molecular beam epitaxy technique for the characterization of THz generation and detection, respectively, and the surface emission based on the photo-Dember effect was tried for THz generation. THz wave was generated by irradiation of a Ti:Sapphire fs pulse laser (60 ps/83 MHz), and a LT-GaAs Rx was used for the THz detection. The frequency band shown in the spectral amplitudes Fourier-transformed from the measured current signals was ranging in 0.5~2 THz, and the signal currents were exponentially increased with the Tx beam power. The THz detection characteristics of LT-InGaAs were investigated by using an Rx with dipole (5/20 ${\mu}m$) antenna, and the cutoff frequency was ~2 THz.

Improving the Accuracy of the Tapped Delay Time-to-Digital Converter Using Field Programmable Gate Array (Field-Programmable Gate Array를 사용한 탭 딜레이 방식 시간-디지털 변환기의 정밀도 향상에 관한 연구)

  • Jung, Do-Hwan;Lim, Hansang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.182-189
    • /
    • 2014
  • A tapped delay line time-to-digital converter (TDC) can be easily implemented using internal carry chains in a field-programmable gate array, and hence, its use is widespread. However, the tapped delay line TDC suffers from performance degradation because of differences in the delay times of dedicated carry chains. In this paper, a dual edge measurement method is proposed instead of a typical step signal to the delay cell to compensate for the performance degradation caused by wide-delay cells in carry chains. By applying a pulse of a fixed width as an input to the carry chains and using the time information between the up and down edges of the signal pulse, the timing accuracy can be increased. Two dedicated carry chain sites are required for the dual edge measurements. By adopting the proposed dual edge measurement method, the average delay widths of the two carry chains were improved by more than 35%, from 17.3 ps and 16.7 ps to 11.2 ps and 10.1 ps, respectively. In addition, the maximum delay times were improved from 41.4 ps and 42.1 ps to 20.1 ps and 20.8 ps, respectively.

Extraction of Muscle Areas from Ultrasonographic Images using Information of Fascia (근막 정보를 이용한 초음파 영상에서의 근육 영역 추출)

  • Kim, Kwang-Baek
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.9
    • /
    • pp.1296-1301
    • /
    • 2008
  • Ultrasonography constructs pictures of areas inside the body needs in diagnosis by bouncing high-enorgy sound waves(ultrasound) off internal tissues or organs. In constructing an ultrasonographic image, the weakness of bounding signals induces noises and detailed differences of brightness, so that having a difficulty in detecting and diagnosing with the naked eyes in the analysis of ultrasonogram. Especially, the difficulty is extended when diagnosing muscle areas by using ultrasonographic images in the musculoskeletal test. In this paper, we propose a novel image processing method that computationally extracts a muscle area from an ultrasonographic image to assist in diagnosis. An ultrasonographic image consists of areas corresponding to various tissues and internal organs. The proposed method, based on features of intensity distribution, morphology and size of each area, extracts areas of the fascia, the subcutaneous fat and other internal organs, and then extracts a muscle area enclosed by areas of the fascia. In the extraction of areas of the fascia, a series of image processing methods such as histogram stretching, multiple operation, binarization and area connection by labeling is applied. A muscle area is extracted by using features on relative position and morphology of areas for the fascia and muscle areas. The performance evaluation using real ultrasonographic images and specialists' analysis show that the proposed method is able to extract target areas being approximate to real muscle areas.

  • PDF

Design of a CCM/DCM dual mode DC-DC Buck Converter with Capacitor Multiplier (커패시터 멀티플라이어를 갖는 CCM/DCM 이중모드 DC-DC 벅 컨버터의 설계)

  • Choi, Jin-Woong;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.21-26
    • /
    • 2016
  • This paper presents a step-down DC-DC buck converter with a CCM/DCM dual-mode function for the internal power stage of portable electronic device. The proposed converter that is operated with a high frequency of 1 MHz consists of a power stage and a control block. The power stage has a power MOS transistor, inductor, capacitor, and feedback resistors for the control loop. The control part has a pulse width modulation (PWM) block, error amplifier, ramp generator, and oscillator. In this paper, an external capacitor for compensation has been replaced with a multiplier equivalent CMOS circuit for area reduction of integrated circuits. In addition, the circuit includes protection block, such as over voltage protection (OVP), under voltage lock out (UVLO), and thermal shutdown (TSD) block. The proposed circuit was designed and verified using a $0.18{\mu}m$ CMOS process parameter by Cadence Spectra circuit design program. The SPICE simulation results showed a peak efficiency of 94.8 %, a ripple voltage of 3.29 mV ripple, and a 1.8 V output voltage with supply voltages ranging from 2.7 to 3.3 V.

Operational Properties and Microbial Inactivation Performance of Dielectric Barrier Discharge Plasma Treatment System (유전체장벽방전 플라즈마 장치의 조작특성과 살균력)

  • Mok, Chulkyoon;Lee, Taehoon
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.398-403
    • /
    • 2011
  • A dielectric barrier discharge plasma (DBDP) treatment system was fabricated and the optimum operating conditions for the plasma generation were determined in order to explore the potential of cold plasma as a non-thermal proessing technology. The microbial inactivation performance of the system was also evaluated against Staphyloocus aureus. The system consisted of power supply, transformer, electrode assembly and sample treatment plate. The input power was 220 V single phase AC and amplified to 10.0-50.0 kV on a transformer. A pulsed sine wave of frequency 10.0-50.0 kHz was introduced to the electrode embedded in ceramic as a dielectric barrier material in order to generate plasma at atmospheric pressure. Higher currents and consequently greater power were required for the plasma generation as the frequencies increased. A homogeneous and stable plasma was generated at currents of 1.0-2.0, and frequencies of 32.0-35.3 kHz. The optimum electrode-gaps for the plasma generation were 1.85 mm without loaded samples. More power was consumed as the electrode-gaps increased. The practically optimum electrode- gap was, however, 2.65 mm when samples were treated on slide-glasses for microbial inactivation. The maximum temperature increase after 10 min treatment was less than 20$^{\circ}C$, indicating no microbial inactivation effect by heat and thereby insuring a non-thermal method. The DBDP inactivation effect against Staphyloocus aureus increased linearly with treatment time up to 5 min, but plateaued afterward. More than 5 log reduction was achieved by 10 min treatment at 1.25 A.

A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring (온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구)

  • Kim, Jung-Yul;Song, Yoon-Ho;Kim, Yoo-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2007
  • Two kinds of temperature monitoring technology have been introduced in this study, which can measure coincidently temperatures at many points along a single length of cable. One is to use a thermal sensor cable comprizing of addressable thermal sensors. The other is to use an optic fiber sensor with Distributed Temperature Sensing (DTS) system. The differences between two technologies can be summarized as follows: A thermal sensor cable has a concept of "point sensing" that can measure temperature only at a predefined position. The accuracy and resolution of temperature measurement are up to the capability of the individual thermal sensor. On the other hand, an optic fiber sensor has a concept of "distributed sensing" because temperature is measured practically at all points along the fiber optic cable by analysing the intensity of Raman back-scattering when a laser pulse travels along the fiber. Thus, the temperature resolution depends on the measuring distance, measuring time and spatial resolution. The purpose of this study is to investigate the applicability of two different temperature monitoring techniques in technical and economical sense. To this end, diverse experiments with two techniques were performed and two techniques are applied under the same condition. Considering the results, the thermal sensor cable will be well applicable to the assessment of groundwater flow, geothermal distribution and grouting efficiency within about loom distance, and the optic fiber sensor will be suitable for long distance such as pipe line inspection, tunnel fire detection and power line monitoring etc.