• Title/Summary/Keyword: 파이프류

Search Result 68, Processing Time 0.027 seconds

Hardware Design of In-loop Filter for High Performance HEVC Encoder (고성능 HEVC 부호기를 위한 루프 내 필터 하드웨어 설계)

  • Park, Seungyong;Im, Junseong;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.335-342
    • /
    • 2016
  • This paper proposes efficient hardware structure of in-loop filter for a high-performance HEVC (High Efficiency Video Coding) encoder. HEVC uses in-loop filter consisting of deblocking filter and SAO (Sample Adaptive Offset) to improve the picture quality in a reconstructed image due to a quantization error. However, in-loop filter causes an increase in complexity due to the additional encoder and decoder operations. A proposed in-loop filter is implemented as a three-stage pipeline to perform the deblocking filtering and SAO operation with a reduced number of cycles. The proposed deblocking filter is also implemented as a six-stage pipeline to improve efficiency and performs a new filtering order for efficient memory architecture. The proposed SAO processes six pixels parallelly at a time to reduce execution cycles. The proposed in-loop filter encoder architecture is designed by Verilog HDL, and implemented by 131K logic gates in TSMC $0.13{\mu}m$ process. At 164MHz, the proposed in-loop filter encoder can support 4K Ultra HD video encoding at 60fps in real time.

Hardware Design of High Performance In-loop Filter in HEVC Encoder for Ultra HD Video Processing in Real Time (UHD 영상의 실시간 처리를 위한 고성능 HEVC In-loop Filter 부호화기 하드웨어 설계)

  • Im, Jun-seong;Dennis, Gookyi;Ryoo, Kwang-ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.401-404
    • /
    • 2015
  • This paper proposes a high-performance in-loop filter in HEVC(High Efficiency Video Coding) encoder for Ultra HD video processing in real time. HEVC uses in-loop filter consisting of deblocking filter and SAO(Sample Adaptive Offset) to solve the problems of quantization error which causes image degradation. In the proposed in-loop filter encoder hardware architecture, the deblocking filter and SAO has a 2-level hybrid pipeline structure based on the $32{\times}32CTU$ to reduce the execution time. The deblocking filter is performed by 6-stage pipeline structure, and it supports minimization of memory access and simplification of reference memory structure using proposed efficient filtering order. Also The SAO is implemented by 2-statge pipeline for pixel classification and applying SAO parameters and it uses two three-layered parallel buffers to simplify pixel processing and reduce operation cycle. The proposed in-loop filter encoder architecture is designed by Verilog HDL, and implemented by 205K logic gates in TSMC 0.13um process. At 110MHz, the proposed in-loop filter encoder can support 4K Ultra HD video encoding at 30fps in realtime.

  • PDF

Discharge Rate Prediction of a new Sandbypassing System in a Field (새로운 샌드바이패싱 시스템의 토출율 예측을 위한 현장실험 연구)

  • Kweon, Hyuck-Min;Park, Sang-Shin;Kwon, Oh-Kyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.4
    • /
    • pp.292-303
    • /
    • 2011
  • A new type of sand bypassing system is proposed for recovering the eroded beach in this study. This system provides an added methodology to the soft defence which is main recovery method for the coastal shore protection in the world. The study proposes a conceptional design and manufacturing procedure for the relatively small size machine of sand bypassing. In order to get the discharging volume information, the power capacity of the system is tested in the field. The discharge rate of the new system shows up to the expected maximum of 618 ton/hr which is 9.6% lower than that by theoretical calculation. It gives a resonable agreement in this system when the flow is assumed to be of the high density. In this study, the delivering volume of sand is estimated according to the discharge rate. The combination of 300 mm(12 inch) intake and 250 mm(10 inch) discharge pipe line has the pumping capacity of $103\;m^3/hr$ which is nearly the same as that of South Lake Worth Inlet sand bypassing system, Florida, U.S.A.. The proposed system added the mobility to its merit. The unit price of Florida's sand bypassing is $$8~9/m^3$ (US). The system would be economically suitable for small volume of sand because no additional equipment is necessary for the intake. The diesel fuel of 25~30 l/hr was consumed during the system operation. The multiple working system would be the next investigation target for large volume of sand.

Validation of Inside Design Safety for the 119 Ambulance using a Structural Analysis (119 구급자동차의 구조해석을 통한 내부 설계 안전성 검증에 관한 연구)

  • Shin, Dong-Min;Kim, Hyung-Wook;Han, Yong-Taek
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.123-132
    • /
    • 2016
  • This study is the result of performing structural analysis in accordance with the new ambulance design of inside space using the new vehicle's bodywork. 3D design works were performed based on international standards and designed ambulance. And then it was tested by a shock of 10G to the ambulance car inside with respect to the vehicle body after that we looked into the consequences. At this time, it was carried out in consideration of its own weight and the weight of components according to the EN regulation. From the result of structural analysis, the internal frame and configured handrail in a variety of pipe did not have a relatively large stress load, but internal panel and cabinets has been interpreted to receive a large stress load at least over 50 MPa. When carried out reinforcement design in accordance with this analysis, the modification of thickness and shape could be necessary. On the basis of these findings, it is also expected that there could be a useful information to produce a more secure vehicle for paramedics and patients using a ambulance inside the vehicle.

Low-power Hardware Design of Deblocking Filter in HEVC In-loop Filter for Mobile System (모바일 시스템을 위한 저전력 HEVC 루프 내 필터의 디블록킹 필터 하드웨어 설계)

  • Park, Seungyong;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.585-593
    • /
    • 2017
  • In this paper, we propose a deblocking filter hardware architecture for low-power HEVC (High-Efficiency Video Coding) in-loop for mobile systems. HEVC performs image compression on a block-by-block basis, resulting in blockage of the image due to quantization error. The deblocking filter is used to remove the blocking phenomenon in the image. Currently, UHD video service is supported in various mobile systems, but power consumption is high. The proposed low-power deblocking filter hardware structure minimizes the power consumption by blocking the clock to the internal module when the filter is not applied. It also has four parallel filter structures for high throughput at low operating frequencies and each filter is implemented in a four-stage pipeline. The proposed deblocking filter hardware structure is designed with Verilog HDL and synthesized using TSMC 65nm CMOS standard cell library, resulting in about 52.13K gates. In addition, real-time processing of 8K@84fps video is possible at 110MHz operating frequency, and operation power is 6.7mW.

An Efficient Hardware Design for Scaling and Transform Coefficients Decoding (스케일링과 변환계수 복호를 위한 효율적인 하드웨어 설계)

  • Jung, Hongkyun;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2253-2260
    • /
    • 2012
  • In this paper, an efficient hardware architecture is proposed for inverse transform and inverse quantization of H.264/AVC decoder. The previous inverse transform and quantization architecture has a different AC and DC coefficients decoding order. In the proposed architecture, IQ is achieved after IT regardless of the DC or AC coefficients. A common operation unit is also proposed to reduce the computational complexity of inverse quantization. Since division operation is included in the previous architecture, it will generate errors if the processing order is changed. In order to solve the problem, the division operation is achieved after IT to prevent errors in the proposed architecture. The architecture is implemented with 3-stage pipeline and a parallel vertical and horizontal IDCT is also implemented to reduce the operation cycle. As a result of analyzing the proposed ITIQ architecture operation cycle for one macroblock, the proposed one has improved by 45% than the previous one.

Design of High Speed Binary Arithmetic Encoder for CABAC Encoder (CABAC 부호화기를 위한 고속 이진 산술 부호화기의 설계)

  • Park, Seungyong;Jo, Hyungu;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.774-780
    • /
    • 2017
  • This paper proposes an efficient binary arithmetic encoder hardware architecture for CABAC encoding, which is an entropy coding method of HEVC. CABAC is an entropy coding method that is used in HEVC standard. Entropy coding removes statistical redundancy and supports a high compression ratio of images. However, the binary arithmetic encoder causes a delay in real time processing and parallel processing is difficult because of the high dependency between data. The operation of the proposed CABAC BAE hardware structure is to separate the renormalization and process the conventional iterative algorithm in parallel. The new scheme was designed as a four-stage pipeline structure that can reduce critical path optimally. The proposed CABAC BAE hardware architecture was designed with Verilog HDL and implemented in 65nm technology. Its gate count is 8.07K and maximum operating speed of 769MHz. It processes the four bin per clock cycle. Maximum processing speed increased by 26% from existing hardware architectures.

Hardware Design of High Performance CAVLC Encoder (H.264/AVC를 위한 고성능 CAVLC 부호화기 하드웨어 설계)

  • Lee, Yang-Bok;Ryoo, Kwang-Ki
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.3
    • /
    • pp.21-29
    • /
    • 2012
  • This paper presents optimized searching technique to improve the performance of H.264/AVC. By using the proposed forward and backward searching algorithm, redundant cycles of latency for data reordering can be removed. Furthermore, in order to reduce the total number of execution cycles of CAVLC encoder, early termination mode and two stage pipelined architecture are proposed. The experimental result shows that the proposed architecture needs only 36.0 cycles on average for each $16{\times}16$ macroblock encoding. The proposed architecture improves the performance by 57.8% than that of previous designs. The proposed CAVLC encoder was implemented using Verilog HDL and synthesized with Magnachip $0.18{\mu}m$ standard cell library. The synthesis result shows that the gate count is about 17K with 125Mhz clock frequency.

Cache and Pipeline Architecture Improvement and Low Power Design of Embedded Processor (임베디드 프로세서의 캐시와 파이프라인 구조개선 및 저전력 설계)

  • Jung, Hong-Kyun;Ryoo, Kwang-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.289-292
    • /
    • 2008
  • This paper presents a branch prediction algorithm and a 4-way set-associative cache for performance improvement of OpenRISC processor and a clock gating algorithm using ODC (Observability Don't Care) operation for a low-power processor. The branch prediction algorithm has a structure using BTB(Branch Target Buffer) and 4-way set associative cache has lower miss rate than direct-mapped cache. The clock gating algorithm reduces dynamic power consumption. As a result of estimation of performance and dynamic power, the performance of the OpenRISC processor using the proposed algorithm is improved about 8.9% and dynamic power of the processor using samsung $0.18{\mu}m$ technology library is reduced by 13.9%.

  • PDF

ASIC Design of OpenRISC-based Multimedia SoC Platform (OpenRISC 기반 멀티미디어 SoC 플랫폼의 ASIC 설계)

  • Kim, Sun-Chul;Ryoo, Kwang-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.281-284
    • /
    • 2008
  • This paper describes ASIC design of multimedia SoC Platform. The implemented Platform consists of 32-bit OpenRISC1200 Microprocessor, WISHBONE on-chip bus, VGA Controller, Debug Interface, SRAM Interface and UART. The 32-bit OpenRISC1200 processor has 5 stage pipeline and Harvard architecture with separated instruction/data bus. The VGA Controller can display RCB data on a CRT or LCD monitor. The Debug Interface supports a debugging function for the Platform. The SRAM Interface supports 18-bit address bus and 32-bit data bus. The UART provides RS232 protocol, which supports serial communication function. The Platform is design and verified on a Xilinx VERTEX-4 XC4VLX80 FPGA board. Test code is generated by a cross compiler' and JTAG utility software and gdb are used to download the test code to the FPGA board through parallel cable. Finally, the Platform is implemented into a single ASIC chip using Chatered 0.18um process and it can operate at 100MHz clock frequency.

  • PDF