• Title/Summary/Keyword: 파랑 수치모형

Search Result 527, Processing Time 0.031 seconds

Application of ADE-PML Boundary Condition to SEM using Variational Formulation of Velocity-Stress 3D Wave Equation (속도-응력 변분식을 이용한 3차원 SEM 탄성파 수치 모사에 대한 ADE-PML경계조건의 적용)

  • Cho, Chang-Soo;Son, Min-Kyung
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.57-65
    • /
    • 2012
  • Various numerical methods in simulation of seismic wave propagation have been developed. Recently an innovative numerical method called as the Spectral Element Method (SEM) has been developed and used in wave propagation in 3-D elastic media. The SEM that easily implements the free surface of topography combines the flexibility of a finite element method with the accuracy of a spectral method. It is generally used a weak formulation of the equation of motion which are solved on a mesh of hexahedral elements based on the Gauss-Lobatto-Legendre integration rule. Variational formulations of velocity-stress motion are newly modified in order to implement ADE-PML (Auxiliary Differential Equation of Perfectly Matched Layer) in wave propagation in 3-D elastic media, because a general weak formulation has a difficulty in adapting CFS (Complex Frequency Shifted) PML (Perfectly Matched Layer). SEM of Velocity-Stress motion having ADE-PML that is very efficient in absorbing waves reflected from finite boundary is verified with simulation of 1-D and 3-D wave propagation.

Experiments for Wave Transformation of Regular and Irregular Waves over a Submerged Elliptic Shoal(I) : Non-breaking Conditions (타원형 수중천퇴상의 규칙파 및 불규칙파의 전파변형 실험(I):비쇄파조건)

  • 이종인;이정욱
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.3
    • /
    • pp.240-246
    • /
    • 2002
  • Hydraulic model experiments were conducted fur a series of regular and uni-directional irregular waves propagating over a submerged elliptic shoal. Two different sets of experiments have been studied; one considers regular wave transformation with no breaking, and the other considers uni-directional irregular wave with partial breaking on top of the shoal. The numerical experiments are also performed using a numerical model based on the parabolic approximation equation. The result of the numerical experiments are compared with that of hydraulic experiments.

Numerical modelling of reflective waves on counter current (흐름상 천해 반사파의 수치해석)

  • 유동훈;김숭경;이석우
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1991.07a
    • /
    • pp.1-5
    • /
    • 1991
  • 1572년도에 발표된 두 수치모형 중 하나인 쌍곡형모형은 조석수치모형에 사용되는 수심적분된 두 방정식 (연속방정식과 운동량보존식)과 유사한 형태의 기본식을 사용하는데, 최초에 Ito and Tanimoto (1972)가 발표한 수식을 파의 군속도가 파속에 일치하지 않는 해역에서 오차가 발생한다.(중략)

  • PDF

Numerical Simulation of Solute Transport in Coastal Areas (해안지역에서의 용존성 물질의 이송확산 거동 수치모의)

  • Kim, Dae-Hong
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • In this study, a numerical simulation technique for coastal area where wave and current interactions are observed is proposed. Considering the spatial scale of coastal area and the coastal processes such as wave, current, shoaling, wave breaking, and inundation processes, boussinesq equation model is used. A depth-integrated transport model based on the consistent assumption with the boussinesq equation model is used for the prediction of solute transport. To solve the equations, finite volume method with an approximate riemann solver is used. The proposed model is applied to a coastal area and reasonable computational results are obtained.

Comparison of PCGM and Parabolic Approximation Numerical Models for an Elliptic Shoal (타원형천퇴에 대한 PCGM과 포물형근사식 수치모형비교)

  • 서승남;연영진
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.216-225
    • /
    • 1994
  • By use of laboratory experiment data set for an elliptic shoal by Berkhoff et al. (1982), both accuracy and Performance tests of numerical results between PCGM (Preconditioned Conjugate Gradient Method) and PA(Parabolic Approximation) are compared. Although both results show good agreement with the experimental data the PA model gives better reproduction of the relatively high amplitudes in the section 4-5 downwave of the shoal, in comparison with the PCGM. The PA model has been proved to be a useful tool for predicting wave transformationsin large shallow water region, but it can be applied only to the case of negligible reflection. On the other hand, there is a need to improve the computational efficiency of the PCGM model which is a finite difference scheme directly derived from the mild slope equation and can handle reflection. By taking the results of th PA model as an input data of the PCGM, the CPU time can be reduced by about 40%.

  • PDF

A Field Application of 3D Seismic Traveltime Tomography (I) - Constitution of 3D Seismic Traveltime Tomography Algorithm - (3차원 탄성파 토모그래피의 현장 적용 (1) - 3차원 토모그래피 알고리즘의 구성 -)

  • Moon, Yoon-Sup;Ha, Hee-Sang;Ko, Kwang-Buem;Kim, Ji-Soo
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.202-213
    • /
    • 2008
  • In this study, theoretical approach of 3D seismic traveltime tomography was investigated. To guarantee the successful field application of 3D tomography, appropriate control of problem associated with blind zone is pre-requisite. To overcome the velocity distortion of the reconstructed tomogram due to insufficient source-receiver array coverage, the algorithm of 3D seismic traveltime tomography based on the Fresnel volume was developed as a technique of ray-path broadening. For the successful reconstruction of velocity cube, 3D traveltime algorithm was explored and employed on the basis of 2nd order Fast Marching Method(FMM), resulting in improvement of precision and accuracy. To prove the validity and field application of this algorithm, two numerical experiments were performed for globular and layered models. The algorithm was also found to be successfully applicable to field data.

A Study on Simulation of Dam-break Wave Using Two-dimensional Finite Volume Model (2차원 유한체적모형을 이용한 댐 붕괴파 모의에 관한 연구)

  • Jeong, Woo-Chang;Park, Young-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.249-262
    • /
    • 2011
  • In this study, in order to reduce the numerical oscillation due to the unbalance between source and flux terms as the HLLC scheme is applied to the flow analysis on the irregular bed topography, a unstructured finite volume model based on the well-balanced HLLC scheme and the shallow water equations is developed and applied to problems of dam-break waves. The well-balanced HLLC scheme considers directly the gradient of bed topography as the flux terms is calculated. This scheme provides the good numerical balance between the source and flux terms in the case of the application to the steady-state transcritical flow. To verify the numerical model developed in this study, it is applied to three cases of hydraulic model experiments and a field case study of Mapasset dam failure (France). As a result of the verification, the predicted numerical results agree relatively well with available laboratory and field measurements. The model provides slightly more accurate results compared with the existing models.

Reduction Effect for Deposition in Navigation Channel with Vegetation Model (식생모형에 의한 항로매몰 저감 특성)

  • Lee, Seong-Dae;Kim, Seong-Deuk;Kim, Ick-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.36 no.8
    • /
    • pp.659-664
    • /
    • 2012
  • Coastal vegetaion consists of rooted flowering marine plants that provide a variety of ecosystem services to the coastal areas they colonize. The attenuation of waves and sediments stabilization are often listed among these services. From this point of view, artificial vegetation model is an effective method of controlling sea bed and stabilization without damaging the landscape or the stability of the coastaline. In this study, numerical and hydraulic physical test for predicting deposition proces of a navigation channel caused by wave action is proposed. In the numerical model, we develop a numerical model for describing the wave attenuation and sediment transport in a navigation channel with a vegetation area. In addition, hydraulic model tests is performed in a navigation channel with irregular waves to examine the effect of vegetation in relation to deposition reduction in navigation channel. A comparison between the results of hydraulic and numerical tests shows resonable agreement.

Wave Transformation Due to Energy Dissipation Region (에너지 감쇠영역으로 인한 파랑변형)

  • 윤종태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.3
    • /
    • pp.135-140
    • /
    • 1999
  • To simulate the wave transformation by an energy dissipation region, a numerical model is suggested by discretizing the elliptic mild-slope equation. Generalized conjugate gradient method is used as solution algorithm to apply parabolic approximation to open boundary condition. To demonstrate the applicabil-ity of the numerical procedure suggested, the wave scattering by a circular damping region is examined. The feature of reflection in front of the damping region is captured clearly by the numerical solution. The effect of the size of dissipation coefficient is examined for a rectangular damping region. The recovery of wave height by diffraction occurs very slowly with distance behind the damping region.

  • PDF

Two-Dimensional Finite-Volume Unsteady-Flow Model for Shocks (충격파 모의를 위한 이차원 유한체적 비정상 흐름 모형)

  • Lee, Gil-Seong;Lee, Seong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.279-290
    • /
    • 1998
  • The height and speed of the shock wave are critical data in flood-control operations or in the design of channel walls and bridges along rivers with high flow velocities. Therefore, a numerical model is needed for simulating flow discontinuity over a wide range of conditions. In this study, a governing equation. As a Riemann solver Roe(1981)'s one is used. The model employs the modified MUSCL for handling the unstructured grids in this research. this model that adopts the explicit tradditional twl dimmensional dam break problems, two hydraulic dam break model is simulations, and a steady state simulation in a curved channel. Conclusions of this research are as follows : 1) the finite volume method can be combined with the Godonov-type method that is useful for modeling shocks. Hence, the finite volume method is suitable for modeling shocks. 2) The finite volume model combined with the modified MUSCL is successful in modeling shock. Therefore, modified MUSCL is proved to be valid.

  • PDF