DOI QR코드

DOI QR Code

Numerical Simulation of Solute Transport in Coastal Areas

해안지역에서의 용존성 물질의 이송확산 거동 수치모의

  • Kim, Dae-Hong (Department of Civil Engineering, University of Seoul)
  • Published : 2014.03.05

Abstract

In this study, a numerical simulation technique for coastal area where wave and current interactions are observed is proposed. Considering the spatial scale of coastal area and the coastal processes such as wave, current, shoaling, wave breaking, and inundation processes, boussinesq equation model is used. A depth-integrated transport model based on the consistent assumption with the boussinesq equation model is used for the prediction of solute transport. To solve the equations, finite volume method with an approximate riemann solver is used. The proposed model is applied to a coastal area and reasonable computational results are obtained.

본 연구에서는 파랑과 흐름이 공존하고 있는 해안지역에 이용이 가능한 물에 용해된 물질의 정확한 이동을 예측하기 위한 수심적분형 수치모의 기법을 제시한다. 대상 영역에 일반적으로 발생하는 파랑의 전파와 변형 과정 및 쇄파와 흐름의 발달 과정에 대한 모의가 가능한 boussinesq equation 흐름모형과 동일한 과정을 거쳐 유도된 수심적분형 물질수송모형을 지배방정식으로 이용한다. 지배방정식은 approximate riemann solver를 이용하는 유한체적법을 이용하여 해석한다. 제시된 수치모형을 이용하여 해일발생에 의한 흐름양상을 계측한 실험을 재현하였으며, 해당 수역에 가상의 물질의 이송과 확산에 대한 수치모의를 수행하고 그 결과를 분석하였다.

Keywords

References

  1. Boussinesq, J. (1872). Theorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, Journal de Mathematiques Pures et Appliquees. Deuxieme Serie Vol. 17, pp. 55-108.
  2. Kim, D. H. (2009). Turbulent flow and transport modeling by long wave and currents, Texas A&M University, Texas, USA.
  3. Kim, D. H., Lynett, P. J. and Socolofsky, S. (2009). A depth-integrated model for weakly dispersive, turbulent, and rotational fluid flows. Ocean Modelling, Vol. 27, pp. 198-214. https://doi.org/10.1016/j.ocemod.2009.01.005
  4. Kim, D. H. and Lynett, P. J. (2011a). Turbulent mixing and passive scalar transport in shallow flows, Physics of Fluids, Vol. 23, doi: 10.1063/1.3531716.
  5. Kim, D. H. and Lynett, P. J. (2011b). Dispersive and Nonhydrostatic Pressure Effects at the Front of Surge, Journal of Hydraulic Engineering, Vol. 137, pp. 754-765. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000345
  6. Lacor, C. A., Smirnov, S. A., Baelmans, M. (2004). A finite volume formulation of compact central schemes on arbitrary structured grids. Journal of Computational Physics, Vol. 198, pp. 535-566. https://doi.org/10.1016/j.jcp.2004.01.025
  7. Liu, P. L. -F., Cho, Y. -S., Briggs, M. J., Kanoglu, U. and Synolakis, C. E., 1995. Run-up of solitary wave on a circular island. Journal of Fluid Mechanics, Vol. 302, pp. 259-285. https://doi.org/10.1017/S0022112095004095
  8. Lynett, P., Melby, J. A. and Kim, D. H. (2010). An application of Boussinesq modeling to hurricane wave overtopping and inundation. Ocean Engineering, Vol. 37, pp. 135-153. https://doi.org/10.1016/j.oceaneng.2009.08.021
  9. Matsuyama, M. and Tanaka, H. (2001). An experimental study of the highest runup height in the 1993 Hokkaido Nansei-oki earthquake tsunami, U.S. National Tsunami Hazard Mitigation Program Review and International Tsunami Symposium (ITS), Seattle, pp. 879-889.