• Title/Summary/Keyword: 파동 전파

Search Result 200, Processing Time 0.024 seconds

Seismic wave propagation through surface basalts - implications for coal seismic surveys (지표 현무암을 통해 전파하는 탄성파의 거동 - 석탄 탄성파탐사에 적용)

  • Sun, Weijia;Zhou, Binzhong;Hatherly, Peter;Fu, Li-Yun
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Seismic reflection surveying is one of the most widely used and effective techniques for coal seam structure delineation and risk mitigation for underground longwall mining. However, the ability of the method can be compromised by the presence of volcanic cover. This problem arises within parts of the Bowen and Sydney Basins of Australia and seismic surveying can be unsuccessful. As a consequence, such areas are less attractive for coal mining. Techniques to improve the success of seismic surveying over basalt flows are needed. In this paper, we use elastic wave-equation-based forward modelling techniques to investigate the effects and characteristics of seismic wave propagation under different settings involving changes in basalt properties, its thickness, lateral extent, relative position to the shot position and various forms of inhomogeneity. The modelling results suggests that: 1) basalts with high impedance contrasts and multiple flows generate strong multiples and weak reflectors; 2) thin basalts have less effect than thick basalts; 3) partial basalt cover has less effect than full basalt cover; 4) low frequency seismic waves (especially at large offsets) have better penetration through the basalt than high frequency waves; and 5) the deeper the coal seams are below basalts of limited extent, the less influence the basalts will have on the wave propagation. In addition to providing insights into the issues that arise when seismic surveying under basalts, these observations suggest that careful management of seismic noise and the acquisition of long-offset seismic data with low-frequency geophones have the potential to improve the seismic results.

Nonhydrostatic Effects on Convectively Forced Mesoscale Flows (대류가 유도하는 중규모 흐름에 미치는 비정역학 효과)

  • Woo, Sora;Baik, Jong-Jin;Lee, Hyunho;Han, Ji-Young;Seo, Jaemyeong Mango
    • Atmosphere
    • /
    • v.23 no.3
    • /
    • pp.293-305
    • /
    • 2013
  • Nonhydrostatic effects on convectively forced mesoscale flows in two dimensions are numerically investigated using a nondimensional model. An elevated heating that represents convective heating due to deep cumulus convection is specified in a uniform basic flow with constant stability, and numerical experiments are performed with different values of the nonlinearity factor and nonhydrostaticity factor. The simulation result in a linear system is first compared to the analytic solution. The simulated vertical velocity field is very similar to the analytic one, confirming the high accuracy of nondimensional model's solutions. When the nonhydrostaticity factor is small, alternating regions of upward and downward motion above the heating top appear. On the other hand, when the nonhydrostaticity factor is relatively large, alternating updraft and downdraft cells appear downwind of the main updraft region. These features according to the nonhydrostaticity factor appear in both linear and nonlinear flow systems. The location of the maximum vertical velocity in the main updraft region differs depending on the degrees of nonlinearity and nonhydrostaticity. Using the Taylor-Goldstein equation in a linear, steady-state, invscid system, it is analyzed that evanescent waves exist for a given nonhydrostaticity factor. The critical wavelength of an evanescent wave is given by ${\lambda}_c=2{\pi}{\beta}$, where ${\beta}$ is the nonhydrostaticity factor. Waves whose wavelengths are smaller than the critical wavelength become evanescent. The alternating updraft and downdraft cells are formed by the superposition of evanescent waves and horizontally propagating parts of propagating waves. Simulation results show that the horizontal length of the updraft and downdraft cells is the half of the critical wavelength (${\pi}{\beta}$) in a linear flow system and larger than ${\pi}{\beta}$ in a weakly nonlinear flow system.

Preliminary Study on the Development of a Performance Based Design Platform of Vertical Breakwater against Seismic Activity - Centering on the Weakened Shear Modulus of Soil as Shear Waves Go On (직립식 방파제 성능기반 내진 설계 Platform 개발을 위한 기초연구 - 전단파 횟수 누적에 따른 지반 강도 감소를 중심으로)

  • Choi, Jin Gyu;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.306-318
    • /
    • 2018
  • In order to evaluate the seismic capacity of massive vertical type breakwaters which have intensively been deployed along the coast of South Korea over the last two decades, we carry out the preliminary numerical simulation against the PoHang, GyeongJu, Hachinohe 1, Hachinohe 2, Ofunato, and artificial seismic waves based on the measured time series of ground acceleration. Numerical result shows that significant sliding can be resulted in once non-negligible portion of seismic energy is shifted toward the longer period during its propagation process toward the ground surface in a form of shear wave. It is well known that during these propagation process, shear waves due to the seismic activity would be amplified, and non-negligible portion of seismic energy be shifted toward the longer period. Among these, the shift of seismic energy toward the longer period is induced by the viscosity and internal friction intrinsic in the soil. On the other hand, the amplification of shear waves can be attributed to the fact that the shear modulus is getting smaller toward the ground surface following the descending effective stress toward the ground surface. And the weakened intensity of soil as the number of attacking shear waves are accumulated can also contribute these phenomenon (Das, 1993). In this rationale, we constitute the numerical model using the model by Hardin and Drnevich (1972) for the weakened shear modulus as shear waves go on, and shear wave equation, in the numerical integration of which $Newmark-{\beta}$ method and Modified Newton-Raphson method are evoked to take nonlinear stress-strain relationship into account. It is shown that the numerical model proposed in this study could duplicate the well known features of seismic shear waves such as that a great deal of probability mass is shifted toward the larger amplitude and longer period when shear waves propagate toward the ground surface.

Asymptotical Shock Wave Model for Acceleration Flow

  • Cho, Seongkil
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.3
    • /
    • pp.103-113
    • /
    • 2013
  • Shock wave model describes the propagation speed of kinematic waves in traffic flow. It was first presented by Lighthill and Whitham and has been deployed to solve many traffic problems. A recent paper pointed out that there are some traffic situations in which shock waves are not observable in the field, whereas the model predicts the existence of waves. The paper attempted to identify how such a counterintuitive conclusion results from the L-W model, and resolved the problem by deriving a new asymptotical shock wave model. Although the asymptotical model successfully eliminated the paradox of the L-W model, the validation of the new model is confined within the realm of the deceleration flow situation since the model was derived under such constraint. The purpose of this paper is to derive the remaining counter asymptotical shock wave model for acceleration traffic flow. For this, the vehicle trajectories in a time-space diagram modified to accommodate the continuously increased speed at every instant in such a way that the relationship between the spacing from the preceding vehicle and the speed of the following vehicle strictly follows Greenshield's model. To verify the validity of the suggested model, it was initially implemented to a constant flow where no shock wave exists, and the results showed that there exists no imaginary shock wave in a homogeneous flow. Numerical applications of the new model showed that the shock wave speeds of the asymptotical model for the acceleration flow tend to lean far toward the forward direction consistently. This means that the asymptotical models performs in a systematically different way for acceleration and for declaration flows. Since the output difference among the models is so distinct and systematic, further study on identifying which model is more applicable to an empirical site is recommended.

Spatio-Temporal Clustering Analysis of HPAI Outbreaks in South Korea, 2014 (2014년 국내 발생 HPAI(고병원성 조류인플루엔자)의 시·공간 군집 분석)

  • MOON, Oun-Kyong;CHO, Seong-Beom;BAE, Sun-Hak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.3
    • /
    • pp.89-101
    • /
    • 2015
  • Outbreaks of highly pathogenic avian influenza(HPAI) subtype H5N8 have occurred in Korea, January 2014 and it continued more than a year until 2015. And more than 5 million heads of poultry hads been damaged in 196 farms until May 2014. So, we studied the spatial, temporal and spatio-temporal patterns of the HPAI epidemics for understanding the propagation and diffusion characteristics of the 2014 HPAI. The results are expressed using GIS. Throughout the study period three epidemic waves occurred over the time. And outbreaks made three clusters in space. First spatial cluster is adjacent areas of province of Chungcheongbuk-do, Chungcheongnam-do and Gyeonggi -do. Second is Jeonlabuk-do Gomso Bay area. And the last is Naju and Yeongam in Jeollanam-do. Also, most of spatio-temporal clusters were formed in spatially high clustered areas. Especially, in Gomso Bay area space density and spatio-temporal density were concurrent. It means that the effective prevention activity for HPAI was carried out. But there are some exceptional areas such as Chungcheongbuk-do, Chungcheongnam-do, Gyeonggi-do adjacent area. In these areas the outbreak density was high in space but the spatio-temporal cluster was not formed. It means that the HPAI virus was continuing inflow over a long period.

A Study on the Fiber-Optic Voltage Sensor Using EMO-BSO (EOM-BSO 소자를 이용한 광전압센서에 관한 연구)

  • Kim, Yo-Hee;Lee, Dai-Young
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.119-125
    • /
    • 1990
  • This paper describes fiber optic voltage sensor using EOM-BSO (Electro-Optic Modulator-Bismuth Silicon Oxcide). Transceiver has an electical/optical converter and an optical/electrical converter which consist of light emitting diode, PIN-PD, and electronic circuits. Multimode fiber cable of $100/140{\mu}m$ core/clad diameter is used for connecting the transceiver to fiber cable and fiber optic voltage sensor. Before our experiments, by applying the Maxwell equations and wave equations, We derive matrix equation on wave propagation in the BSO single crystal. And also we derive optimal equation on intensity modulation arising through an analyzer. According to experi-mental results, fiber optic voltage sensor has maximum $2.5{\%}$ error within the applied AC voltage of 800V. As the applied voltage increases, saturation values of voltage sensor also increase. This phenomenon is caused by optical rotatory power of BSO single crystal. And temperature dependence of sensitivity for fiber optical rotatory power of BSO single crystal. And temperature dependence of sensitivity for fiber optic voltage sensor in the temperature range from$-20^{\circ}C\to\60^{\circ}C$ are measured within ${\pm}0.6{\%}$. And frequency characteristics of the voltage sensor has good frequency characteristics from DC to 100kHz.

  • PDF

A Study on the Underwater Channel Model based on a High-Order Finite Difference Method using GPUs (그래픽 프로세서를 이용한 고차 유한 차분식 기반 수중채널모델 연구)

  • Bae, Ho Seuk;Kim, Won-Ki;Son, Su-Uk;Ha, Wansoo
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.11-20
    • /
    • 2021
  • As unmanned underwater systems have recently emerged, a high-speed underwater channel modeling technique, which is one of the most important techniques in the system, has received a lot of attention. In this paper, we proposed a high-speed sound propagation model and verified the applicability through quantitative performance analyses. We used a high-order finite difference method (FDM) for wave propagation modeling in the water, and a domain decomposition method was adopted using multiple general-purpose graphics processing units (GPUs) to increase the calculation efficiency. We compared the results of the model we proposed with the analytic solution in the half-infinite media and results of the Virtual Timeseries Experiment (VirTEX) model, which is based on the ray method. Finally, we analyzed the performance of the model quantitatively using numerical examples. Through quantitative analyses of the improvement in computational performance, we confirmed that the computational speed increases linearly as the number of GPUs increases. The computation times are increased by 2 times and 8 times, respectively, when the domain size of computation and the maximum frequency are doubled. We expect that the proposed high-speed underwater channel modeling technique is able to contribute to the enhancement of national defense as an underwater communication channel model and analysis tool to develop the underwater communication technique for the unmanned underwater system.

건물의 배수 및 통기시스템: 배관 내부압력의 능동적인 제어

  • Gormly, Michael;Swaffield, John. A.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.39 no.9
    • /
    • pp.41-51
    • /
    • 2010
  • 건물의 배수 및 통기시스템에서 나타나는 현상중에 확실한 내용이 아직 밝혀지지 않은 부분이 몇 가지 남아 있다. 이것은 19세기 말엽의 근대 위생공학의 시작 단계에서부터 잘 알려진 사실이다. 건물의 배수 및 통기시스템 운용에 대한 내용은 일반 공학과 특정 유체역학의 범위 내에서 가장 잘 이해할 수 있다. 건물의 배수 및 통기시스템의 운영에 종사했던 초기의 기술진들은 이러한 점을 잘 알고 있었으며 유체역학에 적합하게 응용한 많은 사례를 확인할 수 있었다. 제2차 세계대전이 끝나고 이에 대한 많은 연구가 진행되어 왔으며 특히 유럽에서 시작된 전후 재건 붐을 통해 배수 및 통기시스템의 설계에 좀 더 효율적인 접근이 진척되게 되었다. 이러한 배수시스템의 중심에는 배수관 내부의 오염된 공기가 배수구 또는 위생기구를 통하여 주거 공간으로 유입되는 것을 방지하는 트랩(Water Trap)이 있다. 배수트랩의 주요 기능인 봉수는 일반적으로 깊이가 40 mm에서 50 mm 정도로 위생기구의 종류에 따라 봉수의 깊이는 다소 차이가 있다. 배수관내 공기의 흐름이 중요한 것처럼 트랩의 봉수 메커니즘이 중요하기 때문에 이 메커니즘을 소홀히 여긴다면 안전한 배수시스템의 운영을 기대하기는 어렵다. 배수관 내의 공기의 흐름은 배수에 의해 유입되거나 또는 배출된다. 배수관에서 내부 압력의 불규칙한 변화로 인하여 야기되는 불안정한 배수의 흐름은 트랩의 봉수를 파괴하고 나아가 주거공간으로 오염된 공기가 새어 나갈 수 있는 통로를 제공하게 된다. 관내압력의 천이는 이로 인한 문제가 발생할 가능성이 있는 위치에 그 압력을 완화할 수 있는 장치를 설계단계에 반영하여 적용함으로써 제어할 수 있다. 건물 내부에 상당한 길이의 통기배관을 설치하는 것은 배관의 마찰손실로 인하여 천이 현상을 효과적으로 제어할 수 있는 확실한 방법이 되지는 못한다. 그렇지만 통기밸브를 설치하는 것과 같이 배수관 내로 공기를 공급해주는 유입구를 건물 내부에 분산 설치하는 것이 효율적인 통기방식이 될 수 있고, 정압 천이로 인한 위험을 줄여줄 수 있다. 통기밸브는 정압 발생의 원인이 되지 않으며 단지 정압에 반응하여 더욱 기밀하게 닫히며, 약화된 압력파를 반사할 뿐이다. 고층 건물에서 배수입상관과 평행하게 설치된 통기입상관(Parallel Vent Pipe)의 경우 극히 일부분의 정압 천이 현상을 완화할 수 있다. (통기 배관의 직경이 배수 입상배관과 동일한 경우 대략 1/3 정도임), 그러므로 정압의 천이로 인한 압력 파동은 배수 시스템의 나머지 부분을 통해 전파되어 배수 트랩에 영향을 미치게 된다. 정압의 천이가 예상되는 위치에 정압천이 완화 장치(Positive Air Pressure Transient Alleviation Device)를 사용하면 배관 내부압력의 급격한 상승을 방지하여 연결된 트랩의 봉수를 보호할 수 있다. 이렇게 되면 순간적으로 발생하는 배관내 압력의 급등 현상을 90% 정도까지 완화 시킬 수 있다. 경험적으로 배수시스템에서 배관이 완전하게 막혀 과도한 정압이 발생하는 경우는 거의 없다. 이러한 경우에는 가장 낮은 위치에 있는 배수 트랩의 봉수가 깨지면서 자연스럽게 배수시스템의 압력이 해소되게 된다. 이러한 사례는 통기 방식과 상관없이 발생할 수 있다. 실제와 유사한 시뮬레이션을 통하여 통기 밸브(Air Admittance Valves)는 전면 통기 시스템 (Fully Vented System)에서 최소한 트랩의 봉수 보호용으로 적합한 것이 확인 되었다. 어떤 경우 에는 고층 건물에 더욱 적합하다는 것을 확인할 수 있었다. 부압 해소용으로 통기밸브를 이용하고 정압완화용으로 정압 완화장치(PAPAs: Positive Air Pressure Transient Attenuators)를 사용하는 전면적 능동 제어시스템(Fully Engineered Designed Active Control System)이 사용자에게 육안으로는 확인하지 못하는 기능을 보장하면서 배수 시스템의 안전과 효율성에 대한 효과적인 방법을 제공하고 있다.

  • PDF

Seismic analysis of tunnel considering the strain-dependent shear modulus and damping ratio of a Jointed rock mass (절리암반의 변형률 의존적 전단탄성계수 및 감쇠비 특성을 고려한 터널의 내진 해석)

  • Song, Ki-Il;Jung, Sung-Hoon;Cho, Gye-Chun;Lee, Jeong-Hark
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.4
    • /
    • pp.295-306
    • /
    • 2010
  • Contrary to an intact rock, the jointed rock mass shows strain-dependent deformation characteristics (elastic modulus and damping ratio). The maximum elastic modulus of a rock mass can be obtained from an elastic wave-based exploration in a small strain level and applied to seismic analyses. However, the assessment and application of the non-linear characteristics of rock masses in a small to medium strain level ($10^{-4}{\sim}0.5%$) have not been carried out yet. A non-linear dynamic analysis module is newly developed for FLAC3D to simulate strain-dependent shear modulus degradation and damping ratio amplification characteristics. The developed module is verified by analyzing the change of the Ricker wave propagation. Strain-dependent non-linear characteristics are obtained from disks of cored samples using a rock mass dynamic testing apparatus which can evaluate wave propagation characteristics in a jointed rock column. Using the experimental results and the developed non-linear dynamic module, seismic analyses are performed for the intersection of a shaft and an inclined tunnel. The numerical results show that vertical and horizontal displacements of non-linear analyses are larger than those of linear analyses. Also, non-linear analyses induce bigger bending compressive stresses acting on the lining. The bending compressive stress concentrates at the intersection part. The fundamental understanding of a strain-dependent jointed rock mass behavior is achieved in this study and the analytical procedure suggested can be effectively applied to field designs and analyses.

Implementation of Non-Stringed Guitar Based on Physical Modeling Synthesis (물리적 모델링 합성법에 기반을 둔 줄 없는 기타 구현)

  • Kang, Myeong-Su;Cho, Sang-Jin;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • This paper describes the non-stringed guitar composed of laser strings, frets, sound synthesis algorithm and a processor. The laser strings that can depict stroke and playing arpeggios comprise laser modules and photo diodes. Frets are implemented by voltage divider. The guitar body does not need to implement physically because commuted waveguide synthesis is used. The proposed frets enable; players to represent all of chords by the chord glove as well as guitar solo. Sliding, hammering-on and pulling-off sounds are synthesized by using parameters from the voltage divider. Because the pitch shifting corresponds to the time-varying propagation speed in the digital waveguide model, the proposed model can synthesize vibrato as well. After transformation of signals from the laser strings and frets into parameters for synthesis algorithm, the digital signal processor, TMS320F2812, performs the real-time synthesis algorithm and communicates with the DAC. The demonstration movieclip available via the Internet shows one to play a song, 'Arirang', synthesized by proposed algorithm and interfaces in real-time. Consequently, we can conclude that the proposed synthesis algorithm is efficient in guitar solo and there is no problem to play the non-stringed guitar in real-time.