DOI QR코드

DOI QR Code

직립식 방파제 성능기반 내진 설계 Platform 개발을 위한 기초연구 - 전단파 횟수 누적에 따른 지반 강도 감소를 중심으로

Preliminary Study on the Development of a Performance Based Design Platform of Vertical Breakwater against Seismic Activity - Centering on the Weakened Shear Modulus of Soil as Shear Waves Go On

  • 최진규 (서울시립대학교 토목공학과) ;
  • 조용준 (서울시립대학교 토목공학과)
  • Choi, Jin Gyu (Department of Civil Engineering, University of Seoul) ;
  • Cho, Yong Jun (Department of Civil Engineering, University of Seoul)
  • 투고 : 2018.12.08
  • 심사 : 2018.12.27
  • 발행 : 2018.12.31

초록

지난 이십여 년 간 우리나라 연안에 집중적으로 거치된 직립식 방파제의 내진 성능을 검토하기 위한 예비 수치모의를 포항, 경주, Hachinohe1, Hachinohe2, Ofunato, 인공지진파를 대상으로 수행하였다. 예비 수치모의 결과 지진으로 인한 전단파가 지반을 통해 전파되는 과정에서 지진에너지가 장주기 대역으로 이동한 Hachinohe2의 경우 항 외곽시설의 활동량이 상당하다는 것을 확인하였다. 지진으로 인한 전단파는 항만시설이 거치된 지표방향으로 증폭되며, 지진에너지의 상당부분은 장주기 대역으로 이동된다. 이 중 장주기 대역으로 이동되는 현상은 지반의 점성 혹은 내부 마찰에 기인하며, 전단파 증폭은 구속 응력의 감소로 인해 지표면 방향으로 감소하는 전단계수와 내습하는 전단파 횟수 누적에 따른 지반 강도 감소에 기인하는 것으로 판단된다(Das, 1993). 이러한 인식에서 본고에서는 먼저 전단파 횟수 누적에 따른 전단계수의 감소의 기술이 가능한 Hardin과 Drnevich(1972) 모형과 파동방정식에 기초하여 수치모형을 구성하고, 이어 전단파 횟수 누적에 따른 전단계수의 감소가 전단파 전파과정에 미치는 영향을 정량적으로 평가하기 위한 수치모의를 수행하였다. 이 과정에서 비선형 응력-변형률 관계를 설명하기 위해 $Newmark-{\beta}$ 방법과 수정 Newton-Raphson 방법을 차용하였다(Chopra, 1995). 모의결과 전단파가 지표면으로 전파되면서 상당한 확률 질량이 상대적으로 큰 진폭과 장주기 쪽으로 이동하는 것을 확연하게 확인할 수 있었다.

In order to evaluate the seismic capacity of massive vertical type breakwaters which have intensively been deployed along the coast of South Korea over the last two decades, we carry out the preliminary numerical simulation against the PoHang, GyeongJu, Hachinohe 1, Hachinohe 2, Ofunato, and artificial seismic waves based on the measured time series of ground acceleration. Numerical result shows that significant sliding can be resulted in once non-negligible portion of seismic energy is shifted toward the longer period during its propagation process toward the ground surface in a form of shear wave. It is well known that during these propagation process, shear waves due to the seismic activity would be amplified, and non-negligible portion of seismic energy be shifted toward the longer period. Among these, the shift of seismic energy toward the longer period is induced by the viscosity and internal friction intrinsic in the soil. On the other hand, the amplification of shear waves can be attributed to the fact that the shear modulus is getting smaller toward the ground surface following the descending effective stress toward the ground surface. And the weakened intensity of soil as the number of attacking shear waves are accumulated can also contribute these phenomenon (Das, 1993). In this rationale, we constitute the numerical model using the model by Hardin and Drnevich (1972) for the weakened shear modulus as shear waves go on, and shear wave equation, in the numerical integration of which $Newmark-{\beta}$ method and Modified Newton-Raphson method are evoked to take nonlinear stress-strain relationship into account. It is shown that the numerical model proposed in this study could duplicate the well known features of seismic shear waves such as that a great deal of probability mass is shifted toward the larger amplitude and longer period when shear waves propagate toward the ground surface.

키워드

참고문헌

  1. Afra, H. and Pecker, A. (2002). Calculation of free response spectrum of a non-homogeneous soil deposit from bed rock response spectrum. Soil Dynamics and Earthquake Engineering, 22, 157-165. https://doi.org/10.1016/S0267-7261(01)00056-2
  2. Bommer, J.J. and Alarcon, J.E. (2006). The prediction and use of peak ground motion. Journal of Earthquake Engineering, 10(1), 1-31. https://doi.org/10.1142/S1363246906002463
  3. Busan Port Construction Office (2007). A Basis Reinforcement Construction Investigation Services Soil Survey Report for Breakwater in Busan new port. Busan Regional Maritime Affairs and Port Administration.
  4. Cho, Y.J. and Na, D.K. (2015). Numerical Analysis of the Depression Effect of Hybrid Breaker on the Run Up Height due to Tsunami based on the Modified Leading Depression N (LDN) Wave Generation Technique. Journal of Korean Society of Coastal and Ocean Engineers, 27(1), 38-49. https://doi.org/10.9765/KSCOE.2015.27.1.38
  5. Chopra, A.K. (1995). Dynamics of structures. Prentice Hall, A simon & Schuster Company, Englewood Cliffs, New Jersey 07632.
  6. Das, B.M. (1993). Principles of soil dynamics. PWS-KENT Publishing Company, Boston.
  7. Davenport, A.G. (1964). Note on the distribution of the largest value of a random function with application to gust loading. Proc. ICE, London, England, 28, June, 187-196.
  8. Graizer, V., Shakel, A. and Hipley, P. (2000). Recent data recorded from down-hole geotechnical arrays. Proceedings of CSMIP2000 Seminar on Utilization of Strong-motion Data, Sacramento, California, 23-38.
  9. Hardin, B.O. and Drnevich, V.P. (1970). Shear Modulus and Damping in Soils: Design Equations and Curves Article in Geotechnical Special Publication, January 1972, University of Kentucky.
  10. Idriss, I.M. and Seed, H.B. (1968). Seismic response of horizontal soil layers. Journal of the Soil Mechanics and Foundations Division, ASCE, 94(SM4), 1003-1031.
  11. Jeong, J.H., Lee, K.Y. and Lim, C.K. (2014). A Study on the Breakwater Characteristics considering Seismic Magnitude. J. Korean Geosynthetics Society, 13(1), 71-83. https://doi.org/10.12814/jkgss.2014.13.1.071
  12. Jiang, T. and Xing, H. (2007). An equivalent linear method considering frequency-dependent soil properties for seismic response analysis. Chinese Journal of Geotechnical Engineering, 29(2), 218-224 (in Chinese). https://doi.org/10.3321/j.issn:1000-4548.2007.02.011
  13. Korean Ministry of Land, Infrastructure and Transport (1997). Study on the Design Guideline of Seismic Capacity II.
  14. Korean Ministry of Public Safety and Security (2015). Korean Ministry of Public Safety and Security will actively reinforce seismic capacity of major infra-structure, 2015.12.28.
  15. Miura, K., Koyamada, K. and Iiba, M. (2001). Response spectrum method for evaluating nonlinear amplification of surface strata. Journal of Structural Engineering, AIJ, 539, 57-62.
  16. Newmark, N.M. and Hall, W.J. (1982). Earthquake spectra and design, Earthquake Engineering Research Institute, Berkeley, California.
  17. Otani, S., Hiraishi, H., Midorikawa, M. and Teshigawara, M. (2000). New Seismic Design Provisions in Japan, ACI Annual Convention in Toronto, Toronto, Canada.
  18. Park, Y.J. (1995). New conversion method from response spectrum to PSD functions. Journal of Engineering Mechanics, ASCE, 121(12), 1391-1392. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:12(1391)
  19. Paskalov, A. and Reese, S. (2003). Deterministic and probabilistic floor response spectra. Soil Dynamics and Earthquake Engineering, 23, 605-618. https://doi.org/10.1016/S0267-7261(03)00064-2
  20. Schnabel, P.B., Lysmer, J. and Seed, H.B. (1972). SHAKE: a computer program for earthquake response analysis of horizontally layered sites, Report No. EERC72-12, University of California, Berkeley.
  21. Yoshida, N., Kobayashi, S. and Suetomi, I. (2002). Equivalent linear method considering frequency dependent characteristics of stiffness and damping. Soil Dynamics and Earthquake Engineering, 22, 205-222. https://doi.org/10.1016/S0267-7261(02)00011-8
  22. Xing, H.L., Jiang, T., Xue, S.T. and Geng, C.Z. (2012). Calculation of Response Spectrum Directly from Bedrock to Free Field using Equivalent Linear Method, Proceedings of 15th World Conference on Earthquake Engineering, Lisboa.