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Abstract

Shock wave model describes the propagation speed of kinematic waves in traffic flow. It was first presented by Lighthill and
Whitham and has been deployed to solve many traffic problems. A recent paper pointed out that there are some traffic situations
in which shock waves are not observable in the field, whereas the model predicts the existence of waves. The paper attempted
to identify how such a counterintuitive conclusion results from the L-W model, and resolved the problem by deriving a new
asymptotical shock wave model. Although the asymptotical model successfully eliminated the paradox of the L-W model, the
validation of the new model is confined within the realm of the deceleration flow situation since the model was derived under
such constraint. The purpose of this paper is to derive the remaining counter asymptotical shock wave model for acceleration
traffic flow. For this, the vehicle trajectories in a time-space diagram modified to accommodate the continuously increased speed
at every instant in such a way that the relationship between the spacing from the preceding vehicle and the speed of the
following vehicle strictly follows Greenshield’s model. To verify the validity of the suggested model, it was initially implemented
to a constant flow where no shock wave exists, and the results showed that there exists no imaginary shock wave in a
homogeneous flow. Numerical applications of the new model showed that the shock wave speeds of the asymptotical model for
the acceleration flow tend to lean far toward the forward direction consistently. This means that the asymptotical models
performs in a systematically different way for acceleration and for declaration flows. Since the output difference among the
models is so distinct and systematic, further study on identifying which model is more applicable to an empirical site is

recommended.
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Asymptotical Shock Wave Model for Acceleration Flow

[ . Introduction

1. Background Information

Shock wave model was introduced five decades ago
by Lighthill and Whitham [1]. It has been deployed
to solve many traffic problems including the traffic
behaviors at signalized intersection[2] and recurrent
and no recurrent queuing on a highway. There have
been many attempts to modify or transform the
Lighthill-Whitham’s shock wave model (L-W model)
such as the works of Daganzo [3, 4], Newell [5, 6],
Zhang [7], and Michalopoulos et al. [8]. Despite the
efforts of many researchers, L-W’s model has
remained unchanged until recently.

A recent paper pointed out that the L-W model is
self-contradict in a specific traffic condition [9].
According to the L-W model, there are some traffic
situations in which shock waves are not observable in
the field, whereas the model predicts the existence of
waves [1, 9]. An example is the shock wave in a
homogeneous speed condition. Lighthill and Whitham
referred to this wave as unobservable; that is,
analogous to a radio wave that cannot be seen.
Gerlough and Huber [10] also described this wave as
imaginary, but useful as an analytical tool.

Cho [9] suggested that there is no logical reason
why this particular wave is unobservable or imaginary
while all other waves are observable in the field. He
attempted to resolve the problem by deriving a new
asymptotical shock wave model. Although Cho’s
revised model successfully eliminated the paradox of
the L-W model, the validation of the new model is
confined within the realm of the deceleration flow
situation since the model was derived under such
constraint[9, 11]. He called for the derivation of the
counterpart model for the acceleration flow situation

but it has not been published yet.

2. Problem statement and study purpose

Shock wave model describes the propagation speed
of kinematic waves in traffic flow. It was first
presented by Lighthill and Whitham and virtually all the
contemporary traffic engineering textbooks [2, 10, 12, 13]
described it as Eq. (1):

BTG
V= k,—k

M

where g and k; are the flow rate and density of
region i, respectively. In Eq.(1), simultaneous switching
the positions of i (i=1, 2) respectively does not make
any difference to the shock wave speed. This means
that Eq.(1) is symmetric that the shock wave speeds
of deceleration flow and acceleration flow are
identical. Fig. 1 illustrates such symmetry of the L-W

model.
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A. Deceleration Flow

B. Acceleration Flow

(Fig. 1> The symmetry of L-W model

In Fig. 1-A, vehicles decelerate speed from v tov’
(v > v’) which forms a shock wave propagating at a
speed of v". In Fig 1-B, vehicles accelerate speed from
v’ to v which also forms an identical shock wave
speed of v'. Such nature of symmetry of L-W model
is self-evident in Eq.(1) since the simultaneous change
of the locations of g and ki ({ = 1, 2) makes no
difference for all g; and k; of the given highway.

On the contrary, in the current asymptotical shock
wave model, which was derived only for the
deceleration flow, such symmetry as in L-W model is

not necessarily guaranteed [9, 11].

- k'
v .= - k/' —k'- k' =k k'—k
k; rIngSR )
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Asymptotical Shock Wave Model for Acceleration Flow

In Eq. 2, simultaneous change of the locations of k
and k" will not yield the same shock wave speed v as
long as k # k. Such dissymmetry of Eq. 2 was
anticipated since it was derived for the deceleration
flows only. Cho [9] left the derivation of the
asymptotical shock wave model for acceleration flow
for future research. The purpose of this paper is to
derive the remaining asymptotical shock wave model
for acceleration traffic flow and to test the suggested

model.

II. Review of the Asymptotical
Shock Wave Model for
Deceleration Flow

Before the derivation of the asymptotical shock
wave model for the acceleration flow, this section
briefly reviews the graphical derivation procedure of
Cho’s current shock wave model, which is dedicated
for the deceleration flow. The review is focused on
the continuously changing trajectory of the following
vehicle which distinguishes the model with that of
Lighthill and Whitham.

slope v’ s’ g

L-W model t (time)
(slopes v, V'), Asymptotical model for
deceleration flow

(speed changes continuously)

AT

S

(Fig. 2) Trajectories of L-Ws linear model and
asymptotical model for deceleration

While deriving the L-W model, it was assumed that
a driver traveling along a highway at a constant speed
v suddenly changes speed to v’ and maintains this
speed for an arbitrarily long time [9]. A following
driver may increase or decrease hisfher speed in some
manner but, if unable to pass, will also adjust to the
In L-W model, the details of the
disregarded and it

new speed v’ .
transition  trajectory = were
extrapolated the trajectory at a speed v and v until the
two asymptotes intersect as shown by the two
articulated dashed lines in Figure 2.

On the contrary, Cho’s approach intended to
eliminate the distortion in relationships among flow-
density-speed from L-W model derivation procedure by
modifying the wvehicle trajectories in a time-space
diagram to accommodate the changing speed at every
moment as the spacing changes from s tos’. In other
words, when a preceding vehicle changes speed from
v tov’, the following vehicle continuously changes
speed in the way that the relationship between the
spacing of the vehicles and the speed of the following
vehicle strictly follow the presumed relationships of
the Greenshield’s model. The resulted was the
asymptotical curve trajectory in Figure 2. As a result,
the time required for the following vehicle to change
its spacing from s tos’is different in each model, i.e.,
one is 7" and the other is 7"(= T"+A"). Tt should be
noted here that, in case of the asymptotical model, the
speed decelerates continuously as the spacing changes
from s to s  and, therefore, the relationships among
flow-density-speed are satisfied and the modeling
distortion of the L-W model is eliminated [9].

From this revised trajectory, asymptotical shock
wave speed for the deceleration flow was derived.
Considering the geometric conditions of Figure 3,
Cho formulated following equation;

- P
s'=s+v'T —I v.dt
o ! 3
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Asymptotical Shock Wave Model for Acceleration Flow

where 7 ”is the time for a wave to propagate from
one car to the next. Equation (2) was the final revised
shock wave speed for the deceleration flow in Cho’s

asymptotical model [9].

S P T S
7 B S i o)

In Equation (2), v is the modified shock wave

speed in a deceleration flow, k; and :—f are constants

under given highway conditions, and & is a model
parameter that can be empirically decided for any

subject highway[9].

- slope V'

1
slope v,

J:\;ak

slope v

(Fig. 3> Curved trajectory for the asymptotical
model for deceleration Flow

. Derivation of Asymptotical Shock
Wave Model for Acceleration Flow

This section attempted to derive the remaining half
of the existing asymptotical shock wave model: model
for acceleration flow. This approach also intends to
eliminate the distortion in relationships among

flow-density-speed from L-W model derivation

procedure by modifying the vehicle trajectories in a
time-space diagram to accommodate the changed speed
at every instant, as the spacing changes from s tos’.
That is, when a preceding vehicle changes speed from
vto v (v <v’), the following vehicle continuously
accelerates speed in such a way that the relationship
between the spacing of the vehicles and the speed of
the following vehicle strictly follow Greenshield’s model.
Figure 4 compares the trajectories of L-W model and the
suggested model.

B Asymptotical model
for acceleration flo
(speed changes
continuously) /

slope v "slope v/ s

/ L-W model

ope c d* ' (slopes v, v)
S I e - )
- B TN

JN

(Fig. 4> Comparison of trajectories: asymptotical
and L-W models for acceleration flow

In Figure 4, the trajectory of the preceding vehicle
is the same in both models. However, the trajectories
of the following vehicle in L-W’s model and the
suggested model differs; one is piecewise linear lines,
while the other is a monotonic concave curve. The
curve is asymptotical to the two dashed lines in the
figure which represent the trajectories of the following
vehicle of L-W model, whereas the solid curve above
it represents the trajectory in the suggested model.

Thus, the time required for the following vehicle to
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Asymptotical Shock Wave Model for Acceleration Flow

change its spacing from s to s’ is different in each
model, i.e., one is 7  and the other is T It should
be noted here that, in the case of the suggested
approach, the speed changes continuously as the
spacing changes from s to s’ and, therefore, the
relationships among flow-density-speed satisfy the
presumed relationships to eliminate the modeling

distortion of L-W approach.
~B’

£ C

thgi/’

si+ds,
slope v’

[“et

slope v
> ad

dt

t dt

e

(Fig. 5> Curved Trajectory : Asymptotical Model
for Acceleration Flow

Derivation of the new shock wave speed for
acceleration flow utilize this revised trajectory. Let us
consider a time instance ¢ and a small time segment
dt between t = 0 and t =7, The spacing and the
speed of the following vehicle at time t (O<t< T*M)
are depicted by s and v, respectively. Geometric

condition in Figure 5 validates the following;
TRk

V. )k
S=5+v7T —.[

. v,dt

(C)
We get k = k; (1-v/vp) from Greenshield’s model

and k = 1/s;, thus v; can be represented as

Vi = Vf( _k/l_s,) )

Substituting v; in Equation(4) with Equation (5) becomes

. e T***(_ . k
s'=s+v'7T va.O 1 s, t ©)

or

' )k sokk vy TRE 1
s'=s+v't —v,T +7J- —dt
E Jj J0 St (7)

Now, let ds; and dd represent the change of
spacing between the two consecutive vehicles and the
change of spatial location of the following vehicle
during a small time period dt, respectively. From the
geometric conditions of Figure 5, the Equation [8] is
obtained:

s, +Vv'dt=s,+ds, +dd

=s, +ds, +v,dt
~v'dt-vdt=ds,
(V' —v,)dt = ds,

Therefore,

V-, . ®)

By substituting dt in Equation(7) with Equation (8)
and changing the integration range with spacing terms,
, e o Vo1
s'=s+v't -vT +k—:L mds, ‘ )

In Equations (8) and (9), it should be noted that
v, #v' to prevent zero denominators and, therefore
s, #s'. This means that the final term of Equation (9)
cannot be integrated as it is, since the upper
integration boundary is s/, which makes the
denominator 0. Cho [9] also confronted the same
computational problem during the derivation of the
model for deceleration.

The problem is depicted [9] as “..this problem
stemmed from the modified assumption that the

time-space trajectory of the following vehicle strictly
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satisfies the presumed flow-density-speed relationships.
In figure, the slope of the trajectory of the modified
model constantly changes as the spacing decreases.
Thus, although v; approaches v’, it can never merge
to v’, as long as the volume-speed relationship is
strictly satisfied. ~Since drivers cannot achieve such
extremely precise spacing and speed adjustment, it is
necessary to approximate the upper bound of the
integration range. The assumption to accommodate this

problem is as follows:

...the following vehicle stops spacing and speed

”»

adjustment when the speed sufficiently approaches v'.

The same relaxed assumption is adopted here which
enables to substitute s’ in Equation (9) with Bs’,
where B is a number slightly smaller than 1.0 in the
case where v < v’ and s < s (acceleration flow).
Substituting Bs’ for s’ in Equation (9) gives
Equation (10):

Sesevr —pr 4 fs' 1 ds
- —Vr 7—)
k/ S V- Vi [- (10)

Except the parameter B instead of &, Equation
(10) is identical to the counter equation of the
deceleration flow model. Thus the remaining
computation process is exactly same to that of the

deceleration flow model, and we get:

o _ Y, K
VA Sy P S
/@-{ ' */HW%V} (11)

Equation (11) is the revised shock wave speed for
the acceleration flow. In Equation (11), v"is the

shock wave speed of the asymptotical model for

acceleration flow, where k; and :—f are constants under

given highway conditions, and B can be empirically
determined from field observation.

. Model validation and numerical test

1. Shock wave in a homogeneous flow

In his previous work, Cho [9] demonstrated with
the deceleration shock wave model that the shock
wave speed in a homogeneous traffic stream is always
identical to the ambient vehicle speed. Theoretically,
the asymptotical model for the acceleration flow, Eq.
(11), should yield same result. To verify the validity
of the model for acceleration flow, we computed the
shock wave speed in a homogeneous stream in general
terms. In a homogeneous traffic stream, v and v,
and s and s’ are all identical and constant,
respectively. The wave velocity v™" in such case can
be represented by letting k ~ approach to k in Eq. (11)

as follows:

kil]
i n ke
:Q{k.—k—k—}w

;U e 12)

Equation (12) shows that, with the model for
acceleration flow, the shock wave speed in a
homogeneous traffic stream is always identical to the
ambient speed, or equivalently, v = v’ = v"". Figure
6 graphically represented the same result where the
slopes of the asymptotical models are all the same,
whereas the shock wave speed v* of L-W model
differs from the ambient traffic speed (v or v”). Thus
the paradox of L-W model is also resolved for the

acceleration flow case.
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(Fig. 6> Shock wave speeds in homogeneous flow
2. Numerical model test

(1) Test data

To test the symmetry of the asymptotical shock
wave model for acceleration flow, a set of numerical
values are deployed into the model. For the convenient
and consistent comparison and data accessibility, the
numerical values are cited from one of the
contemporary traffic engineering textbook written by
Garber and Hoel [13]. The same data were also cited
by Cho [11] for the tests of the asymptotical model
for deceleration. For this reason, the distance scale
uses mile (mi) instead of kilometer (km). The given
numerical traffic values are as follows:

Saturation flow rate (Qmax) : 2000 veh/hr/ln
Jam density (k;) : 150 veh/In/mi

From Greenshield’s speed-density relationship and
equation of q=ke®v, the free flow speed (vp is
determined as follows:

Free flow speed (v¢) : 53.3mph

The Greenshield’s speed-density relationship is also
used for this numerical test since it was used by the
two previous asymptotical model papers [9, 11].
Since the suggested asymptotical model in this paper
was applicable only to the acceleration flow
conditions, the speed before change (v) is smaller than
that of after the change (v). The default value of B
for this model tests is 0.0095, which means that the

following driver terminates his/her vehicle spacing

adjustment with 0.05 percent margin. Other B values
may be deployed but previous study result [10]
indicates that the closer proximity to 1.0 enhances the
model stability thus 0.0095, instead of 0.95 and 0.095,
was deployed in this test.

(2) Model test 1: symmetry comparison

One of the most frequent observations of shock
waves occurs at a congested urban intersection when
the signal changes from a green light to a red light
(deceleration) or when a red light changes to green
(acceleration). In L-W model, as long as the
approaching speed is identical to that of departure, the
shockwave speed for deceleration is also identical to
that of acceleration (Table 1). Deployment of actual
numerical values to the models clearly distinguishes
In Table 1. The shock

wave speeds of L-W model for deceleration and

the outputs of each model.

acceleration are the same -26.7 mph (backward). On
the contrary, the shock wave speed of the asymptotical
model for deceleration is - 13.3 mph (backward)
while that of the acceleration is + 11.8 mph (forward).
This example clearly shows the asymmetric nature of

the asymptotical model.

(Table 1> Symmetry and asymmetry examples of the models

Modéfl , Shock wave
(Equation v v d
Number) e

v* = -27.6 mph
53.3 mph 0 (backward)p
L-W model (1) * = 27.6 mph
vE = 27,
0 53.3 mph (backward)
Asymptotical Kk =
model for 53.3 mph 0 v (b C]:‘iid?lph
deceleration (4)
Asymptotical kk
= 11. h
model for 0 533 mph | (forwal‘z)mp
acceleration (12)
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() Model test 2: acceleration from stop

For a detailed illustration of the shock wave
comparison, two identical numerical tests were
conducted with different density ranges. Figure 7
compares the shock waves formed when the flow
condition changed from stable to no flow (stop); thus,
the initial density k ranged from O (free flow
condition) to 75 veh/ln/mi with an increment of 5
while all terminal density is kj (=k’). Figure 8 is the
remaining half plotted for the initial density k from 75
with an increment of 5 up to 150 veh/ln/mi (jam
density). L-W model was deployed twice; one for
deceleration (v>0 and v’=0) and the other for
acceleration flow (v=0 and v’>0). The deceleration
and acceleration asymptotical models were deployed
separately in accordance with the flow scenarios, i.e.,
deceleration model for v>0, and acceleration model for

v’=0, and v=0 and v">0).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
60 k (veh/In/mi)

50 1 Te~o --==-v** (4=1.0005)

0 4 =~ < _ accleration flow = = =y** (3=0.0095)
30 - TTeeeel v
2 T 225mph
10
0 | ===zze I ]
10 K - 6.2 mph
" deceleration flow P
ol both flows -26.7 mph
-40 -
speed (mph)

(Fig. 7> Comparison of shock waves at signalized
intersection: stable flow to stop and
stop to stable flow.

In Figure 7, the shock waves of the L-W model
change linearly toward the backward direction as the
initial density k increases for both deceleration and
acceleration flows. For the deceleration flow condition,
the shock wave speed of the asymptotical model is
smaller than that given by the L-W model as was
described by the previous work by Cho [9]. The shock
wave speed of the asymptotical model for the

acceleration flow, however, tends to lean far toward

the forward direction consistently and systematically.
This means that the performance difference between
L-W model and asymptotical model is more distinctive
in a acceleration flow than in the deceleration flow.
This comparison indicates that the two models
perform in a very different way but we have little
idea that one model performs better than the other.
Since the output difference between the two models is
distinct and systematic, further tests and inspection
should follow to reveal which model is more
applicable than the other. At this moment, however,
it should be noted that L-W model is much stiffer
since it ignores the speed spacing adjustment between
two consecutive vehicles while a shock wave occurs
while the asymptotical models incorporate speed-space

relationship during the transition procedure.

50 -===-y** (@=1.0005)
40 = = =V (8=00095)

= -
S 20 —— -
£ il accleration flow

10 s~ ,
32 N Tteell A
§ o AT
5 -10 T 2!
% 20 deceleration flow

230 T——

T both flows
-40 —
D
-50 —

o i
75 80 85 90 95 100105110115120125130135 140145250 < (VeN/I/mD

(Fig. 8) Comparison of shock waves at signalized
intersection: forced flow to stop and
stop to forced flow.

Figure 8 shows the remaining half of the density k
spectrum : 75 to 150 veh/ln/mi for deceleration and
for acceleration flows. The shock wave speeds of the
asymptotical model for acceleration flow tend to be
inclined to the forward direction more than those of
the deceleration flow, which is similar to the
aforementioned case described in Figure7. However,
the shock wave speed differences between the two
model are continuously decreasing as the density

approaches to kj. The shock wave speed differences
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between the asymptotical model for acceleration flow
and L-W model are virtually constant regardless of the
range of k. Figure 8 also shows a outlying data points
around the jam density where the initial density k is
close to he final density k .

Figure 9 combines Figures 7 and 8, excluding the
near-jam density region. It shows more clearly that the
asymptotical model yields different shock wave speeds
for deceleration and acceleration flows thus the model
is asymmetric. In addition, the difference between the
asymptotical model and L-W model for acceleration
flow is large but remained constant throughout the
entire density spectrum. On the other hand. the
difference between the asymptotical models for
acceleration flow and for deceleration flow decreases

gradually as the difference between k and k * decreases.

0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 k (veh/In/mi)

v
= = v** (@=1.0005)
== ==ys (320.0095)

both flows

SW speed(mph)

(Fig. 9> Comparison of shock waves at signalized
intersection: all flow to stop and stop
to all flow.

(4) Model test 3: acceleration from a low speed

To test the asymptotical model for acceleration
from a low speed, another set of numerical data are
prepared. For this test, it is assumed that the flow
speed changed from v=14.2 mph with a density of
110 to higher speeds ranged from v’ =16 mph to 53.3
mph, of which density ranged accordingly from 105 to O.

The solid line and the crude dashed line in Figure
10 are the shock wave speeds of L-W model and the

asymptotical model for deceleration flow, respectively.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100105  k (veh/In/mi)

v

e — = —v** (a=1.0005)
------------- v*** (3=0.0095)

bothflows

SW speed(mph)

(Fig. 10> Comparison of shock waves: acceleration
from a low speed to higher speeds. and
deceleration from higher speeds to a
lower speed.

When compared with the counter part lines in
Figure 9, the slopes and shapes of the two lines in
Figure 10 are very similar but they are shifted toward
the downstream direction. The shock wave speeds of
the acceleration model, which are plotted by the dense
dashed line in Figure 10, are far more shifted toward
the downstream direction. Overall, however, the shock
waves of the deceleration and acceleration models are
clearly different thus Figure 10 depicts the asymmetry

of the asymptotical model.

3. Test of significance

The numerical tests of the asymptotical shock wave
model acceleration in Section 2 showed that its outputs
are different than the corresponding outputs of L-W
model and deceleration model. To assess whether the
outputs of three models are different significantly in a
statistical sense, a matched difference #-fest was repeatedly
applied as shown in Table 1. The formulated null
hypothesis for the significance test was defined as

follows:

Hy: The observed average of the differences of both
models is not significantly greater than the expected
average of the difference (0).

The model output differences of each numerical
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(Table 2) Tests of significance of model performance

Model Comparison Sample | Output difference Standard . Degree of Reference
t-test . .. t-statistic
test No. between size average Deviation freedom p-value
t-test 1 2 v oand v 30 489 32 84.5 29 p < 0.0005
t-test 2 3 v oand v 22 359 23 739 21 p < 0.0005
t-test 3 2 v oand v 30 292 16.1 29.1 29 p < 0.0005
t-test 4 3 v oand v 22 21.6 11.9 19.6 21 p < 0.0005

deployment, output difference average, the standard

deviations, the t-statistics, and the p-values are
computed and summarized in Table 2.
In the tests,

thus, the null hypothesis is rejected at the 0.05% level

all p-values are smaller than 0.0005;

of significance. These tests of significance indicate that
model for
significantly different outputs compared to both L-W

the asymptotical acceleration yielded

model and the deceleration model.

V. Conclusions

With L-W model, there exists a shock wave even
in a constant traffic flow. Lighthill and Whitham and
other researchers described this wave as imaginary, but
useful as an analytical tool. Cho [9, 11] suggested that
there is no logical reason why this particular wave is
unobservable or imaginary while all other waves are
observable in the field. He attempted to resolve the
paradox by deriving a new asymptotical shock wave
model and showed that the derivation process of the
L-W model oversimplified the relationships among
speed-density-flow.

Although the asymptotical model resolved the
counterintuitive  output of L-W model, it remained
uncompleted since it incorporated the deceleration flow
conditions only. The actual derivation of Cho’s
asymptotical model showed that it considered the
vehicle trajectories in association with the deceleration
flow only and he left the derivation of the companion
model for the acceleration flow for further study. In

this paper we derived the asymptotical model for the

acceleration traffic flow. For this, to eliminate the
distortion in relationships among flow-density-speed
from L-W model derivation procedure, the vehicle
trajectories in a time-space diagram modified to
accommodate the changing speed at every instant.
With the new model, when a preceding vehicle
increases the speed, the following vehicle continuously
accelerates speed in such a way that the relationship
between the spacing from the preceding vehicle and
the speed of the following vehicle strictly follows
Greenshield’s model. In different

trajectories, the asymptotical model for the acceleration

spite of the

flow was identical to that of the deceleration flow
except the parameter, 3, which incorporates the
threshold of the

following vehicle under acceleration flow condition.

spacing and speed adjustment

To verify its validity, the new model was initially
implemented to a constant flow where no shock wave
exists, and the results showed that there exists no
imaginary shock wave in a homogeneous flow. Thus
the paradox of L-W model was resolved. Numerical
applications of the new model with a set of traffic
flow scenario showed that the asymptotical model is
not symmetric. For the acceleration flow condition, the
shock wave speed of the asymptotical model is greater
than that given by the model for deceleration flow as
was demonstrated previous. The shock wave speed of
the asymptotical model for the acceleration flow tends
to lean far toward the forward direction consistently.
This means that the asymptotical models performs in a
systematically different way for acceleration and for

declaration flows.
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Although L-W model and the asymptotical model
performed differently, this paper leaves the topic that
which model performs better than the other for the
future study since it exceeds the scope of the study.
However, the output difference between the two
models is so distinct and systematic that immediate
further study on both models should follow to identify
which model is more applicable to an empirical site.
Thus this paper may serve as a starting point for such

further researches.
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