DOI QR코드

DOI QR Code

A Study on the Underwater Channel Model based on a High-Order Finite Difference Method using GPUs

그래픽 프로세서를 이용한 고차 유한 차분식 기반 수중채널모델 연구

  • Received : 2020.10.01
  • Accepted : 2020.12.15
  • Published : 2021.03.31

Abstract

As unmanned underwater systems have recently emerged, a high-speed underwater channel modeling technique, which is one of the most important techniques in the system, has received a lot of attention. In this paper, we proposed a high-speed sound propagation model and verified the applicability through quantitative performance analyses. We used a high-order finite difference method (FDM) for wave propagation modeling in the water, and a domain decomposition method was adopted using multiple general-purpose graphics processing units (GPUs) to increase the calculation efficiency. We compared the results of the model we proposed with the analytic solution in the half-infinite media and results of the Virtual Timeseries Experiment (VirTEX) model, which is based on the ray method. Finally, we analyzed the performance of the model quantitatively using numerical examples. Through quantitative analyses of the improvement in computational performance, we confirmed that the computational speed increases linearly as the number of GPUs increases. The computation times are increased by 2 times and 8 times, respectively, when the domain size of computation and the maximum frequency are doubled. We expect that the proposed high-speed underwater channel modeling technique is able to contribute to the enhancement of national defense as an underwater communication channel model and analysis tool to develop the underwater communication technique for the unmanned underwater system.

최근 수중 무인 체계가 대두됨에 따라 핵심 기반 기술인 장거리 수중통신기술 및 고속 수중채널모델링 기술이 많은 관심을 받고 있다. 본 논문에서는 고속 수중채널모델링을 수행하기 위한 고속 음파전달모델을 제안하여, 정량적인 성능 분석을 통해 제안 기술의 적용 가능성을 살펴보았다. 수층에서의 파동 전파를 모사하기 위하여 고차 유한 차분 기법을 사용하였으며, 범용 그래픽 프로세서를 이용한 영역 분할 기법을 적용하여 여러 개의 그래픽 프로세서 병렬 처리를 통해 연산 속도를 향상시켰다. 제안한 기법은 반무한 매질에서의 해석해와의 비교 및 파선법에 기반한 VirTEX 모델을 이용한 결과와의 비교를 통해 그 타당성을 검증하였다. 최종적으로 수치예제를 통해 고속 수중채널 모델링 기법의 정량적인 연산 성능을 분석하였다. 개발모델의 연산 성능 향상 정도를 정량적으로 분석한 결과 그래픽 프로세서 수가 증가함에 따라 연산 속도가 선형에 가깝게 빨라지는 것을 확인하였다. 연산 영역의 크기가 2배로 증가할 때와 주파수가 2배로 증가할 때 계산 시간은 각각 2배와 8배로 증가하였다. 본 논문을 통해 제안한 고속 수중채널모델 기술은 해양무인체계의 수중통신기술 개발을 위한 수중통신 채널모델 및 분석 툴로 탑재되어 국방력 강화에 기여할 수 있을 것으로 기대된다.

Keywords

References

  1. Allard, Y. and E. Shahbazian, Unmanned Undersea Vehicles (UUV) Information Study, OODA Technologies, DRDC-RDDC-2014-C290, pp. 3-11, 2014.
  2. Chen, J.-B., "A stability formula for Lax-Wendroff methods with fourth-order in time and general-order in space for the scalar wave equation", Geophysics, Vol. 76, No. 2, pp. T37-T42, 2011. https://doi.org/10.1190/1.3554626
  3. Chen, G., Meng, H., Liang, Y. and Huang, K., "GPU-accelerated real-time stereo estimation with binary neural network", IEEE Transactions on Parallel and Distributed Systems, Vol. 31, No. 12, pp. 2896-2907, 2020. https://doi.org/10.1109/tpds.2020.3006238
  4. Cheng, J., Grossman, M. and McKercher, T., Proffessional CUDA C Programming, John Wiley & Sons, Indianapolis, Indiana: pp. 387-424, 2014.
  5. Clayton, R. and Engquist, B., "Absorbing boundary conditions for acoustic and elastic wave equations", Bulletin of the Seismological Society of America, Vol. 67, No. 6, pp. 1529-1540, 1977. https://doi.org/10.1785/BSSA0670061529
  6. Dablain, M. A., "The application of high-order differencing to the scalar wave equation", Geophysics, Vol. 51, No. 1, pp. 54-66, 1986. https://doi.org/10.1190/1.1442040
  7. Ha, S., Ku, N. and Roh, M.-I., "GPU-accelerated reliability analysis method using dynamic reliability block diagram based on DEVS formalism", Journal of the Korea Society for Simulation, Vol. 22, No. 4, pp. 109-118, 2013. https://doi.org/10.9709/JKSS.2013.22.4.109
  8. Kim, S., Cho, J. and Park, D., "Accelerated largescale simulation on DEVS based hybrid system using collaborative computation on multi-cores and GPUs", Journal of the Korea Society for Simulation, Vol. 27. No. 3, pp. 1-11, 2018. https://doi.org/10.9709/JKSS.2018.27.3.001
  9. Kwon, D.-C. and Kang, B.-Y., "CPU and GPU performance analysis for convolutional neural network", The Journal of Korean Institute of Information Technology, Vol. 15, No. 8, pp. 11-18, 2017. https://doi.org/10.14801/jkiit.2017.15.8.11
  10. Lee, O.-S., "A direction of development of large UUVs for anti-submarine warfare connected to the future warfare development trend of the Navy", Defense & Technology, Vol. 457, pp. 80-89, 2017.
  11. Liu, Y. and Sen, M. K., "A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation", Geophysics, Vol. 75, No. 2, pp. A1-A6, 2010. https://doi.org/10.1190/1.3295447
  12. Peterson, J. C. and Porter, M. B., "A Fast Algorithm for Computing Doppler Introduced by Sea Surface Gravity Waves," 161st Meeting of the Acoustical Society of America, pp. 5aUW, 2011.
  13. Porter, M. B., Ocean Acoustics Library, https://oalib-acoustics.org/, 2008.
  14. Siderius, M. and Porter, M. B., "Modeling techniques for marine mammal risk assessment", IEEE Journal of Oceanic Engineering, Vol. 31, No. 1, pp. 49-60, 2006 https://doi.org/10.1109/JOE.2006.872211
  15. Siderius, M. and Porter, M. B., "Modeling broadband ocean acoustic transmissions with time-varying sea surfaces", Journal of Acoustical Society of America, Vol. 124, No. 1, pp. 137-150, 2008. https://doi.org/10.1121/1.2920959
  16. Xu, J., Liu, Liu, W., Wang, J., Liu, L. and Zhang, J., "An efficient implementation of 3D high-resolution imaging for large-scale seismic data with GPU/CPU heterogeneous parallel computing", Computers and Geosciences, Vol. 111, pp. 272-282, 2018 https://doi.org/10.1016/j.cageo.2017.11.020