• Title/Summary/Keyword: 파동속

Search Result 71, Processing Time 0.025 seconds

An Analytical Solution of Progressive Wave-Induced Residual Pore-Water Pressure in Seabed (진행파동장하 해저지반내 잔류간극수압의 해석해)

  • Lee, Kwang-Ho;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung;Kim, Kyu-Han;Ryu, Heung Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.3
    • /
    • pp.159-167
    • /
    • 2015
  • In this paper, the errors found in the existed analytical solutions described the mechanism of residual pore-water pressure accumulation were examined and a new analytical was proposed. The new analytical solution was derived by using a Fourier series expansion and separation of variables was verified by comparison with the existed both analytical and numerical solutions and experimental result. The new analytical solution is very simple that there is no need for numerical integration for deep soil thickness. In addition, the solutions of the residual pore-water pressure for finite, deep, and shallow soil thickness reveled that it is possible to approach from finite to shallow soil thickness, but not possible to deep soil thickness because there was discontinues zone between finite and deep soil thickness.

Synthetic Seismograms of Non-geometric S* and P* Waves Using the Reflectivity Method (반사도 기법에 의한 비기하적 S* 및 P* 파의 합성 계산)

  • Hong, Dong Hee;Baag, Chang Eob
    • Economic and Environmental Geology
    • /
    • v.23 no.4
    • /
    • pp.393-409
    • /
    • 1990
  • Synthetic seismograms and deduced characteristic properties of the non-geometrical $S^*$ and $P^*$ waves are presented. These waves are excited on the free surface or an interface between two different media by an inhomogeneous P wave from a point source nearby, and propagate as homogeneous waves in the media. Synthetic seismograms are computed using an extended reflectivity method designed for buried source and receiver. An efficient computational procedure for propagator matrices of layers is devised to reduce the computational time and the RAM memory size in the implementation of the reflectivity method. Radiation patterns are obtained from the particle motions of the four types of the "*" waves, i.e., the $S^*$ wave generated near the free surface, and the reflected $S^*$, transmitted $S^*$ and transmitted $P^*$ waves generated near an interface. Some patterns show polarity changes of displacements and others reveal monotonic or non-monotonic variation of amplitude depending on the velocity structure. The decaying trend of amplitude with increasing epicentral distance are also shown for the head wave type of the "*" waves.

  • PDF

The Phase-velocity Dispersion Characteristics of Love Wave and Rayleigh Wave in the Half Space and Multi-layered System (반무한체와 다층구조 지반에서 러브파 및 레일레이파의 위상속도 분산특성)

  • 이일화;조성호
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.61-73
    • /
    • 2004
  • Rayleigh wave and Love wave are the major elastic waves belonging to the category of the surface wave. The fact that Love wave is not contaminated by P-wave makes Love wave superior to Rayleish wave and other body waves. Therefore, the information that Love wave carries is more distinct and clearer than the information of Rayleigh wave. In this study, for the purpose of employing Love wave in the SASW method, the dispersion characteristics of the Love wave were extensively investigated by the theoretical, numerical and experimental approaches. The 2-D and 3-D finite element analyses for the half space and two-layer systems were performed to determine the phase velocities from Love wave as well as from both the vertical and the horizontal components of Rayleigh wave. Also, the SASW measurements were performed at the geotechnical sites to verify the results obtained by the numerical analysis. The results of the numerical analysis and the field testing indicated that the dispersion characteristics of Love wave can be an extended information to make better evaluation of the subsurface stiffness structure by SASW method.

Full Waveform Inversion using a Cyclic-shot Subsampling and a Reference-shot Subset (주기적 송신원 추출과 참조 송신원 부분집합을 이용한 완전 파형 역산)

  • Jo, Sang Hoon;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.2
    • /
    • pp.49-55
    • /
    • 2019
  • In this study, we presented a reference-shot subset method for stable convergence of full waveform inversion using a cyclic-shot subsampling technique. Full waveform inversion needs repetitive modeling of wave propagation and thus its calculation time increases as the number of sources increases. In order to reduce the computation time, we can use a cyclic-shot subsampling method; however, it makes the cost function oscillate in the early stage of the inversion and causes a problem in applying the convergence criteria. We introduced a method in which the cost function is calculated using a fixed reference-shot subset while updating the model parameters using the cyclic-shot subsampling method. Through the examples of full waveform inversion using the Marmousi velocity model, we confirmed that the convergence of cost function becomes stable even under the cyclic-shot subsampling method if using a reference-shot subset.

Application of linear-array microtremor surveys for rock mass classification in urban tunnel design (도심지 터널 암반분류를 위한 선형배열 상시진동 탄성파 탐사 적용)

  • Cha, Young-Ho;Kang, Jong-Suk;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.108-113
    • /
    • 2006
  • Urban conditions, such as existing underground facilities and ambient noise due to cultural activity, restrict the general application of conventional geophysical techniques. At a tunnelling site in an urban area along an existing railroad, we used the refraction microtremor (REMI) technique (Louie, 2001) as an alternative way to get geotechnical information. The REMI method uses ambient noise recorded by standard refraction equipment and a linear geophone array to derive a shear-wave velocity profile. In the inversion procedure, the Rayleigh wave dispersion curve is picked from a wavefield transformation, and iteratively modelled to get the S-wave velocity structure. The REMI survey was carried out along the line of the planned railway tunnel. At this site vibrations from trains and cars provided strong seismic sources that allowed REMI to be very effective. The objective of the survey was to evaluate the rock mass rating (RMR), using shear-wave velocity information from REMI. First, the relation between uniaxial compressive strength, which is a component of the RMR, and shear-wave velocity from laboratory tests was studied to learn whether shear-wave velocity and RMR are closely related. Then Suspension PS (SPS) logging was performed in selected boreholes along the profile, in order to draw out the quantitative relation between the shear-wave velocity from SPS logging and the RMR determined from inspection of core from the same boreholes. In these tests, shear-wave velocity showed fairly good correlation with RMR. A good relation between shear-wave velocity from REMI and RMR could be obtained, so it is possible to estimate the RMR of the entire profile for use in design of the underground tunnel.

A Review of Seismic Full Waveform Inversion Based on Deep Learning (딥러닝 기반 탄성파 전파형 역산 연구 개관)

  • Sukjoon, Pyun;Yunhui, Park
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.227-241
    • /
    • 2022
  • Full waveform inversion (FWI) in the field of seismic data processing is an inversion technique that is used to estimate the velocity model of the subsurface for oil and gas exploration. Recently, deep learning (DL) technology has been increasingly used for seismic data processing, and its combination with FWI has attracted remarkable research efforts. For example, DL-based data processing techniques have been utilized for preprocessing input data for FWI, enabling the direct implementation of FWI through DL technology. DL-based FWI can be divided into the following methods: pure data-based, physics-based neural network, encoder-decoder, reparameterized FWI, and physics-informed neural network. In this review, we describe the theory and characteristics of the methods by systematizing them in the order of advancements. In the early days of DL-based FWI, the DL model predicted the velocity model by preparing a large training data set to adopt faithfully the basic principles of data science and apply a pure data-based prediction model. The current research trend is to supplement the shortcomings of the pure data-based approach using the loss function consisting of seismic data or physical information from the wave equation itself in deep neural networks. Based on these developments, DL-based FWI has evolved to not require a large amount of learning data, alleviating the cycle-skipping problem, which is an intrinsic limitation of FWI, and reducing computation times dramatically. The value of DL-based FWI is expected to increase continually in the processing of seismic data.

Experiments on the stability of the spatial autocorrelation method (SPAC) and linear array methods and on the imaginary part of the SPAC coefficients as an indicator of data quality (공간자기상관법 (SPAC)의 안정성과 선형 배열법과 자료 품질 지시자로 활용되는 SPAC 계수의 허수 성분에 대한 실험)

  • Margaryan, Sos;Yokoi, Toshiaki;Hayashi, Koichi
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.121-131
    • /
    • 2009
  • In recent years, microtremor array observations have been used for estimation of shear-wave velocity structures. One of the methods is the conventional spatial autocorrelation (SPAC) method, which requires simultaneous recording at least with three or four sensors. Modified SPAC methods such as 2sSPAC, and linear array methods, allow estimating shear-wave structures by using only two sensors, but suffer from instability of the spatial autocorrelation coefficient for frequency ranges higher than 1.0 Hz. Based on microtremor measurements from four different size triangular arrays and four same-size triangular and linear arrays, we have demonstrated the stability of SPAC coefficient for the frequency range from 2 to 4 or 5 Hz. The phase velocities, obtained by fitting the SPAC coefficients to the Bessel function, are also consistent up to the frequency 5 Hz. All data were processed by the SPAC method, with the exception of the spatial averaging for the linear array cases. The arrays were deployed sequentially at different times, near a site having existing Parallel Seismic (PS) borehole logging data. We also used the imaginary part of the SPAC coefficients as a data-quality indicator. Based on perturbations of the autocorrelation spectrum (and in some cases on visual examination of the record waveforms) we divided data into so-called 'reliable' and 'unreliable' categories. We then calculated the imaginary part of the SPAC spectrum for 'reliable', 'unreliable', and complete (i.e. 'reliable' and 'unreliable' datasets combined) datasets for each array, and compared the results. In the case of insufficient azimuthal distribution of the stations (the linear array) the imaginary curve shows some instability and can therefore be regarded as an indicator of insufficient spatial averaging. However, in the case of low coherency of the wavefield the imaginary curve does not show any significant instability.

Analysis of academic achievements on above-level testing of newly entering students in science specialized high schools (상급 학년 수준 시험을 활용한 과학고 신입생들의 학업성취도 특성 연구)

  • Ahn, Tae Hwan;Park, Kyung Hee
    • Journal of Gifted/Talented Education
    • /
    • v.25 no.1
    • /
    • pp.119-138
    • /
    • 2015
  • This study analyzed the academic achievements on above-level testing of mathematics, physics, chemistry, and English in newly entering students of science specialized high schools. It can be expected that newly students of science high specialized schools have reached ceiling level in the middle school mathematics and science academic scores. Above-level testing(or off-level testing) is a test tool used to evaluate student's ability which are above-grade level. In this study, above-level testing tools were used to develop the same type examination paper of the 2013 Korean College Scholastic Ability Test(CSAT) in mathematics, physics, chemistry, and English. The conclusions of this study were as follow: First, the academic achievement level of science specialized high school freshmen were higher the average level of general high school senior because that over 50% of them are within the 5 grade of CSAT in mathematics, physics, and chemistry. In English, 19.3% science specialized high school freshmen have reached within the 5 grade of CSAT. Second, as a result of examining characteristics of academic achievement with respect to units of subjects, in mathematics, it was showed that the academic achievement of 'continuity and limit of a function' unit was higher, 'statistics' unit was lower. In physics, the academic achievement of 'Electricity and Magnetism' unit was higher, 'Waves and particles' unit was lower. In chemistry, the academic achievement of 'compounds in life' unit was higher, 'Air' unit was lower. In English, the academic achievement of 'practical sentence' of reading area was higher, 'Sentence' of writing area was lower. In conclusion, above-level testing provided a good strategy for identifying and determining appropriate programming interventions for gifted students who are two or more grade levels above their age-mates in achievements, aptitude, or ability.

A Design Study on Seoul CheongGye Plaza (서울 청계광장 설계 연구)

  • Shin, Hyun-Don
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.3
    • /
    • pp.12-21
    • /
    • 2012
  • The proximities of Cheonggye creek was a maj or space for the gathering of large populations from the past times and it is also a place containing the joy, anger, sorrow, pleasure and lives of the citizens. The Cheonggye creek which flowed downtown of Seoul throughout many historical events had disappeared into history completely in the modernization process due to the contamination with life sewages and overflow. However, the city authority of Seoul decided to restore it to its shape before covering the creek by means of dismantling the old elevated ways in Cheonggye creek in line with the Large Scale City Movement Project to revive the grey city and to improve the quality of the city landscape in 2002. The cultural space was created by activating the old town sphere in Cheonggye Creek and the amenities of the giant city was improved by the cultural and natural wave created along the creek. In addition, the educational opportunity has been provided to the citizens by means of reviving its historical nature. The design and cultural value of the Cheonggye Plaza were restored for the mean time and the urban environment requested during modem times was established. The Cheonggye Plaza which heightened the balanced development in Seoul which has been developed in an unbalanced way by dividing into northern and southern area of the river is very meaningful in the viewpoint of the landscape architect who designs the urban space. The re-birth as a cultural space of downtown owing to the efforts of the said cultural catalysts is meaningful.

Implementation of Non-Stringed Guitar Based on Physical Modeling Synthesis (물리적 모델링 합성법에 기반을 둔 줄 없는 기타 구현)

  • Kang, Myeong-Su;Cho, Sang-Jin;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • This paper describes the non-stringed guitar composed of laser strings, frets, sound synthesis algorithm and a processor. The laser strings that can depict stroke and playing arpeggios comprise laser modules and photo diodes. Frets are implemented by voltage divider. The guitar body does not need to implement physically because commuted waveguide synthesis is used. The proposed frets enable; players to represent all of chords by the chord glove as well as guitar solo. Sliding, hammering-on and pulling-off sounds are synthesized by using parameters from the voltage divider. Because the pitch shifting corresponds to the time-varying propagation speed in the digital waveguide model, the proposed model can synthesize vibrato as well. After transformation of signals from the laser strings and frets into parameters for synthesis algorithm, the digital signal processor, TMS320F2812, performs the real-time synthesis algorithm and communicates with the DAC. The demonstration movieclip available via the Internet shows one to play a song, 'Arirang', synthesized by proposed algorithm and interfaces in real-time. Consequently, we can conclude that the proposed synthesis algorithm is efficient in guitar solo and there is no problem to play the non-stringed guitar in real-time.