• Title/Summary/Keyword: 트립토판

Search Result 85, Processing Time 0.021 seconds

Effect of Substituted Residue 139 and 258 on Structural Changes of Mutant Tryptophan Synthase Pro96→Leu α-Subunit (트립토판 중합효소 α 소단위 잔기 치환체 Pro96→Leu의 구조 변화에 영향을 미치는 139 및 258 잔기의 치환 효과)

  • Lee, Joo-Youn;Jeong, Jae-Kap;Shin, Hae-Ja;Lim, Woon-Ki
    • Journal of Life Science
    • /
    • v.12 no.4
    • /
    • pp.464-468
    • /
    • 2002
  • Enzymatic activities and fluorescence spectroscopic properties of the double mutant proteins P96L/F139W, P96L/F258W and a triple mutant protein P96L/F139W/F258W of tryptophan synthase $\alpha$ subunit from Escherichia coli was examined to study tertiary and local structure changes around the tryptophan residues. The enzymatic activities of P96l./F139W and P96L/F258W were similar, but P96L/F139W/F258W had lower activity, as compared to wild type. The fluorescence intensities of double mutant, P96L/F139W and P96L/F258W, were decreased but that of a triple mutant, P96L/F139W/F258W, was increased when compared to wild type. The sum of the maximum fluorescence intensity (fluorescence intensity at the λ$_{max}$) for the double mutant proteins was not equal to the intensity seen in the triple mutant protein. The enzymatic activity and fluorescence data indicate that the replacement of Pro$^{96}$ longrightarrowLeu might affect on the stability of helix 8 and the loop located between strand 4 and helix4. The result suggests that the tertiary structure of triple mutant (P96L/F139W/F258W), being different from wild type, might have more compact residual structure at the vicinity of 139 and 258.8.

Hypopigmentary Effects of Dipeptides in B16 Melanoma Cells (디펩타이드의 B16 악성흑색종세포에서 멜라닌 생성억제작용)

  • Nam, Hee-Seung;Kim, Eun-Hyun;Kim, Su-Yeon;Lee, Hyun-E;Hong, Ji-Yun;Lee, Jae-Guk;Cho, Sung-Tai;Cho, Yang-Hwan;Yun, Hye-Young;Baek, Kwang-Jin;Kwon, Nyoun-Soo;Min, Young-Sil;Park, Kyoung-Chan;Kim, Dong-Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.1
    • /
    • pp.67-73
    • /
    • 2012
  • In the present study, we investigated the effects of dipeptides on melanogenesis in B16 melanoma cells. It was found that WV (Trp+Val), WM (Trp+Met), and CQ (Cys+Gln) decreased melanin production dosedependently. However, dipeptides did not directly inhibit tyrosinase activity, the rate-limiting melanogenic enzyme. Therefore, we further investigated the expression of tyrosinase. Our results showed that ${\alpha}$-MSH-induced tyrosinase expression was down-regulated by WV, WM, and CQ. Thus, we propose that WV, WM, and CQ show hypopigmentary activity through tyrosinase down-regulation.

Biosynthetic pathway of shikimate and aromatic amino acid and its metabolic engineering in plants (식물에서 shikimate 및 방향족 아미노산 생합성 경로와 이의 대사공학적 응용)

  • Lim, Sun-Hyung;Park, Sang Kyu;Ha, Sun-Hwa;Choi, Min Ji;Kim, Da-Hye;Lee, Jong-Yeol;Kim, Young-Mi
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.135-153
    • /
    • 2015
  • The aromatic amino acids, which are composed of $\small{L}$-phenylalanine, $\small{L}$-tyrosine and $\small{L}$-tryptophan, are general components of protein synthesis as well as precursors for a wide range of secondary metabolites. These aromatic amino acids-derived compounds play important roles as ingredients of diverse phenolics including pigments and cell walls, and hormones like auxin and salicylic acid in plants. Moreover, they also serve as the natural products of alkaloids and glucosinolates, which have a high potential to promote human health and nutrition. The biosynthetic pathways of aromatic amino acids share a chorismate, the common intermediate, which is originated from shikimate pathway. Then, tryptophan is synthesized via anthranilate and the other phenylalanine and tyrosine are synthesized via prephenate, as intermediates. This review reports recent studies about all the enzymatic steps involved in aromatic amino acid biosynthetic pathways and their gene regulation on transcriptional/post-transcriptional levels. Furthermore, results of metabolic engineering are introduced as efforts to improve the production of the aromatic amino acids-derived secondary metabolites in plants.

Calculation of Replacement Price for Alternative Feed Ingredient in Consideration of Nutrient Content in Feed Ingredient Fed to Broiler Chickens (영양소 함량을 고려한 육계 대체 원료사료의 대체가격 계산)

  • An, Su Hyun;Kong, Changsu
    • Korean Journal of Poultry Science
    • /
    • v.45 no.2
    • /
    • pp.73-79
    • /
    • 2018
  • The objective of this study was to calculate the unit price of an alternative feed ingredient for broiler chickens in consideration of the energy and nutritive contents in the feed ingredient by using a simple Excel worksheet. A corn-distiller's dried grains with solubles (corn-DDGS) was used as an alternative ingredient and corn and soybean meal as ingredients to be replaced. The net change of feed price was calculated based on the replacement values which were estimated in consideration of energy and nutrient concentration in feed ingredients used in the calculation, the price of feed ingredients and inclusion rate of the alternative ingredient. The nitrogen corrected apparent metabolizable energy(AMEn) and standardized ileal digestible AA including Lys, Met, Thr, and Trp, total Ca, and available P were employed as nutritive component to calculate the replacement values for individual feed ingredients. The equation for replacement was 1 ${\times}$ corn-DDGS + 0.0334 ${\times}$ soybean oil + 0.0182 ${\times}$ Limestone = 0.8893 ${\times}$ corn + 0.13 ${\times}$ soybean meal + 0.0004 ${\times}$ Lys + 0.0022 ${\times}$ Met + 0.0005 ${\times}$ Trp + 0.0028 ${\times}$ Thr + 0.0264 ${\times}$ dicalcium phosphate. The replacement price of corn-DDGS was calculated to be 270 won/kg when the inclusion rate was 15% and the energy and nutrient contents were considered in the calculation. In conclusion, the Excel-based ingredient price calculator may be useful to determine the economic value when an alternative feed ingredient is used in diets fed to broiler chickens.

Antioxidant activity and inhibitory effect of melatonin and the relative indole compounds on perilla oil oxidation (멜라토닌 및 관련 인돌 화합물의 산화방지능과 들기름 산화에 대한 억제 효과)

  • Kim, Seok Joong
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.610-617
    • /
    • 2016
  • Melatonin, known as a powerful wide-spectrum antioxidant, is consumed as a food supplement in some countries, but its applicability as an antioxidant additive was not yet studied. Therefore, we evaluated the antioxidant activity of melatonin by DPPH, ABTS, FRAP and ORAC assays as well as its ability to inhibit perilla oil oxidation. The activities of four other related indoles were also compared. Melatonin showed the highest antioxidant activity (mmol trolox equivalent per mol indole, mmol TE) in ORAC (2,159) assay, but a low antioxidant activity in DPPH (0.63), ABTS (91), and FRAP (764) assays, whereas serotonin showed an opposite result. Addition of 1% (w/w) melatonin to perilla oil extended the induction period of oxidation up to about 2 times ($2.93{\pm}0.47h$) compared to that of control ($1.43{\pm}0.26h$) in the Rancimat assay, corresponding to almost 50% of the ability of butylated hydroxyl toluene (BHT). Tryptamine was the most effective indole that inhibited perilla oil oxidation ($9.53{\pm}1.43h$).

Effect of 18 Irradiation on Neurotransmitters in the Brains of Goldfish Carassius auratus (18 방사성동위원소 피폭에 의한 금붕어(Carassius auratus)뇌의 신경전달물질 변화)

  • Park, Nam-Gyu;Go, Hye-Jin;Kim, Gun-Do;Lee, Jong-Kyu;Kil, Sang-Hyeong;Lee, Byung-Woo
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1046-1051
    • /
    • 2012
  • In order to investigate the changes in bioactive materials induced in goldfish brains by $^{18}F$ irradiation, the variations in the neurotransmitter levels in the whole brain were studied. The distance between the goldfish and 580 mCi of $^{18}F$ was about 4 cm, and the exposure lasted for 4 hrs. The absorption level calculated based on the distance, exposure time, and half-life of $^{18}F$ was approximately 2 Gy. After sacrifice by $^{18}F$ irradiation or untreated conditions, ten brains were dissected or immediately frozen, respectively. The tissues were extracted in acetic acid. After lyophilization, the samples were dissolved in distilled water and were further purified on a reverse-phase HPLC column. There were no differences in the intensities of the bioactive materials between $^{18}F$-exposed goldfish and control goldfish, while the only peak corresponded to 13 min, which indicated a significant increase in the irradiated brains. Our analysis has found that this compound is tryptophan. This result suggests that $^{18}F$ leads to changes in a classical neurotransmitter, tryptophan, in both the brains of control goldfish and goldfish contaminated by irradiation.

Suppression of a Residue 173 Mutant Form on Aggregation of Tryptophan Synthase α-Subunits from Escherichia coli (대장균 트립토판 중합효소 α 소단위체의 응집 형성에 미치는 잔기 173 치환체의 억제 효과)

  • Jeong, Jae Kap;Park, Hoo Hwi;Lim, Woon Ki
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.729-733
    • /
    • 2022
  • Aggregation of normally soluble proteins can cause disease-related problems. Tryptophan synthase α-subunit (αTS) in E. coli adopts one of most popular structural scaffolds, the TIM barrel fold. Previous mutagenesis of the αTS gene resulted in many aggregation-prone mutant proteins. Here, Y173F (Tyr at residue 173 to Phe) substitution, which imparts increased stability, was tested for its ability to suppress aggregation of aggregation-prone mutant proteins (Y4C, S33L, P28L, P28S, G44S, D46N, P96L, and P96S). Aggregation was suppressed in all eight severe aggregate-forming mutants (all differing in their mutation positions), by the Y173F replacement. P28L αTS, which was available in pure form, was further analyzed and showed reduced secondary structure content, lower stability, and a looser structure with more exposed hydrophobic surface compared to the wild type protein. A double mutant P28L/Y173F protein showed almost no indication of these changes compared to the wild type protein. We hypothesized that Tyr at position 173 in αTS is positioned at the hydrophobic core and may serve to suppress the aggregation of this protein caused by other residues. Important residue (s) could be working widely in the prevention/suppression of protein aggregation.

Retention Mechanism of Caffeine and Tryptophan in Macroporous Poly[Methacrylic Acid-co-Ethylene Glycol Dimenthacrylate] Rods (매크로 다공성 Poly[Methacrylic Acid-co-Ethylene Glycol Dimenthacrylate] 막대에서 Caffeine과 Tryptophan의 체류 메카니즘)

  • Jin, Longmei;Yan, Hongyuan;Zheng, Jinzhu;Row, Kyung-Ho
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.401-404
    • /
    • 2006
  • Macroporous Poly(Methacrylic acid-co-Ethylene Glycol Dimethacrylate) Rods were in situ thermal initialized within a empty column($3.9{\times}150mm$) by free radical polymerization. The polymerization mixture was consisted of monomer, cross-linking monomer, porogenic solvent, initiator and control the ratio of these materials, column efficiency could be developed. Caffeine and tryptophan as separation substances and the retention mechanism of this kind of monolithic column was mainly hydrogen bond function.

Bacterial Reverse Mutation Assay of Xylooligosaccharide (Xylooligosaccharide의 복귀돌연변이 시험)

  • 오화균;박윤제;이운택;이지완;이창승;류보경;양창근;윤세왕;강부현
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.3
    • /
    • pp.259-264
    • /
    • 1999
  • To evaluate the bacterial reverse mutation of xylooligosaccharide(XO)s the in vitro Ames test using Salmonella typhimurium (TA9S, TAIOO, TA1535, TA1537) and Escherichia coli (WP2 uvrA) was performed. XO was negative in Ames test with Salmonella typhimurium and Escherichia coli with and without rat liver microsomal enzyme (S-9 fraction). According to the results, XO does not cause bacterial reverse mutation.

  • PDF

Modigication of host cells and Expression of Recombinant E. coli trp plasmids for the increased Production of Tryptophan in Klebsiella pneumoniae (Klebsiella pneumoniae에서 트립토판 생산증대를 위한 숙주개발 및 재조합 trp plasmid의 발현)

  • 지연태;홍광원;박장현;이세영
    • Korean Journal of Microbiology
    • /
    • v.25 no.1
    • /
    • pp.46-51
    • /
    • 1987
  • In order to increase the production of tryptophan by maximizing expression of recombinant trp plasmid, Klebsiella pneumoniae KC 105(pheA tyrA trpE trpR tyrR) was genetically modified. KC 107, inosine monophospate(IMP) auxotroph from KC 105 and KC 108, histidine(His) auxotroph from KC 107 were also derived respectively to increase phosphoribosylpyrophosphate(PRPP) production which is required for tryptophan biosynthesis. From KC 107 phosphoribosylpyrophosphate consumption which is required for tryptophan biosynthesis. From KC 107 and KC 108, KC 109 and KC 110, both arginine auxotrophs were derived respectively. To investigate the expression of recombinant trp plasmid in the selected K. pneumoniae mutants, the auxotrophic mutants were transformed with recombinant trp plasmids pSC 101-$trpE^{FBR}$, pSC 101-trpL(.DELTA.att) $trpE^{FBR}$ (pSC 101-trp-AF). Amount of tryptophan produced and activities of tryptophan synthase of $trpR^{-}$ mutant (KC 100) and $tyrR^{-}$ mutnat(KC 105) containing recombinant plasmid pSC 101-trp operon were increased by 30-40% as compared with KC 99(pheA tyrA trpE) containing recombinant plasmid pSC 101-trp operon. Activities of tryptophan synthase and production of tryptophan of KC 108 ($His^{-}$) and KC 109($Arg^{-}$) containing recombinant plasmid pSC 101-trp operon were increase by two-fold as compared with KC 107 containing pSC 101-trp operon.

  • PDF