DOI QR코드

DOI QR Code

Hypopigmentary Effects of Dipeptides in B16 Melanoma Cells

디펩타이드의 B16 악성흑색종세포에서 멜라닌 생성억제작용

  • Nam, Hee-Seung (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Kim, Eun-Hyun (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Kim, Su-Yeon (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Lee, Hyun-E (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Hong, Ji-Yun (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Lee, Jae-Guk (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Cho, Sung-Tai (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Cho, Yang-Hwan (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Yun, Hye-Young (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Baek, Kwang-Jin (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Kwon, Nyoun-Soo (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Min, Young-Sil (Department of Herb Industry, Jungwon University) ;
  • Park, Kyoung-Chan (Department of Dermatology, Seoul National University College of Medicine) ;
  • Kim, Dong-Seok (Department of Biochemistry, Chung-Ang University College of Medicine)
  • 남희승 (중앙대학교 의과대학 생화학교실) ;
  • 김은현 (중앙대학교 의과대학 생화학교실) ;
  • 김수연 (중앙대학교 의과대학 생화학교실) ;
  • 이현이 (중앙대학교 의과대학 생화학교실) ;
  • 홍지연 (중앙대학교 의과대학 생화학교실) ;
  • 이재국 (중앙대학교 의과대학 생화학교실) ;
  • 조성태 (중앙대학교 의과대학 생화학교실) ;
  • 조양환 (중앙대학교 의과대학 생화학교실) ;
  • 윤혜영 (중앙대학교 의과대학 생화학교실) ;
  • 백광진 (중앙대학교 의과대학 생화학교실) ;
  • 권년수 (중앙대학교 의과대학 생화학교실) ;
  • 민영실 (중원대학교 한방산업학부) ;
  • 박경찬 (서울대학교 의과대학 피부과학교실) ;
  • 김동석 (중앙대학교 의과대학 생화학교실)
  • Received : 2011.12.12
  • Accepted : 2012.03.12
  • Published : 2012.03.30

Abstract

In the present study, we investigated the effects of dipeptides on melanogenesis in B16 melanoma cells. It was found that WV (Trp+Val), WM (Trp+Met), and CQ (Cys+Gln) decreased melanin production dosedependently. However, dipeptides did not directly inhibit tyrosinase activity, the rate-limiting melanogenic enzyme. Therefore, we further investigated the expression of tyrosinase. Our results showed that ${\alpha}$-MSH-induced tyrosinase expression was down-regulated by WV, WM, and CQ. Thus, we propose that WV, WM, and CQ show hypopigmentary activity through tyrosinase down-regulation.

본 연구에서는 B16 악성흑색종 세포에서 디펩타이드(dipeptide)의 멜라닌생성 저해 효과를 연구하였다. 실험결과 WV (트립토판-발린), WM (트립토판-메치오닌), CQ (시스테인-글루타민)는 멜라닌 생성을 농도 의존적으로 감소시켰다. 그러나 디펩타이드는 멜라닌 생합성과정의 속도 조절 단계 효소인 타이로시네이즈(tyrosinase)의 활성을 직접 감소시키지는 않았다. 따라서 타이로시네이즈의 발현양상을 조사하였고, 실험 결과 ${\alpha}$-MSH가 유도한 타이로시네이즈 발현이 WV, WM, 그리고 CQ에 의해 억제되었다. 그러므로 WV, WM, 그리고 CQ가 타이로시네이즈의 억제성 조절(down-regulation)을 통해 멜라닌 생성을 감소시킨다고 제안될 수 있다.

Keywords

References

  1. G. E. Costin and V. J. Hearing, Human skin pigmentation: melanocytes modulate skin color in response to stress, Faseb. J., 21, 976 (2007). https://doi.org/10.1096/fj.06-6649rev
  2. E. J. Land, C. A. Ramsden, and P. A. Riley, Quinone chemistry and melanogenesis, Methods Enzymol., 378, 88 (2004). https://doi.org/10.1016/S0076-6879(04)78005-2
  3. V. J. Hearing and K. Tsukamoto, Enzymatic control of pigmentation in mammals, Faseb. J., 5, 2902 (1991).
  4. J. Lee, E. Jung, J. Park, K. Jung, E. Park, J. Kim, S. Hong, J. Park, S. Park, S. Lee, and D. Park, Glycyrrhizin induces melanogenesis by elevating a cAMP level in b16 melanoma cells, J. Invest Dermatol., 124, 405 (2005). https://doi.org/10.1111/j.0022-202X.2004.23606.x
  5. Z. A. Abdel-Malek, A. Ruwe, R. Kavanagh- Starner, A. L. Kadekaro, V. Swope, C. Haskell- Luevano, L. Koikov, and J. J. Knittel, alpha-MSH tripeptide analogs activate the melanocortin 1 receptor and reduce UV-induced DNA damage in human melanocytes, Pigment Cell Melanoma Res., 22, 635 (2009). https://doi.org/10.1111/j.1755-148X.2009.00598.x
  6. M. Schurink, W. J. van Berkel, H. J. Wichers, and C. G. Boeriu, Novel peptides with tyrosinase inhibitory activity, Peptides, 28, 485 (2007). https://doi.org/10.1016/j.peptides.2006.11.023
  7. A. Abu Ubeid, L. Zhao, Y. Wang, and B. M. Hantash, Short-sequence oligopeptides with inhibitory activity against mushroom and human tyrosinase, J. Invest Dermatol., 129, 2242 (2009). https://doi.org/10.1038/jid.2009.124
  8. T. Tsuboi, H. Kondoh, J. Hiratsuka, and Y. Mishima, Enhanced melanogenesis induced by tyrosinase gene-transfer increases boron-uptake and killing effect of boron neutron capture therapy for amelanotic melanoma, Pigment Cell Res., 11, 275 (1998). https://doi.org/10.1111/j.1600-0749.1998.tb00736.x
  9. G. E. Resch and W. R. Millington, Inhibition of interleukin- 1beta and prostaglandin E(2) thermogenesis by glycyl-glutamine, a pro-opiomelanocortin- derived peptide, Brain Res., 894, 316 (2001). https://doi.org/10.1016/S0006-8993(01)02002-9
  10. M. Terashima, M. Oe, K. Ogura, and S. Matsumura, Inhibition Strength of Short Peptides Derived from an ACE Inhibitory Peptide, J. Agric Food Chem., 59, 11234 (2011). https://doi.org/10.1021/jf202902r
  11. S. Cavun, G. Goktalay, and W. R. Millington, Glycyl-glutamine, an endogenous beta-endorphinderived peptide, inhibits morphine-induced conditioned place preference, tolerance, dependence, and withdrawal, J. Pharmaco. Exp. Ther., 315, 949 (2005). https://doi.org/10.1124/jpet.105.091553
  12. A. M. Girelli, E. Mattei, A. Messina, and A. M. Tarola, Inhibition of polyphenol oxidases activity by various dipeptides, J. Agric Food Chem., 52, 2741 (2004). https://doi.org/10.1021/jf0305276
  13. M. A. Babizhayev, G. M. Nikolayev, J. G. Nikolayeva, and Y. E. Yegorov, A survey and analysis of the role of molecular chaperone proteins and imidazole- containing dipeptide-based compounds as molecular escorts into the skin during stress, injury, water structuring and other types of cutaneous pathophysiology, Int. J. Cosmet. Sci., 33, 1 (2011). https://doi.org/10.1111/j.1468-2494.2010.00601.x
  14. R. Busca and R. Ballotti, Cyclic AMP a key messenger in the regulation of skin pigmentation, Pigment Cell Res., 13, 60 (2000). https://doi.org/10.1034/j.1600-0749.2000.130203.x
  15. M. Khaled, L. Larribere, K. Bille, E. Aberdam, J. P. Ortonne, R. Ballotti, and C. Bertolotto, Glycogen synthase kinase 3beta is activated by cAMP and plays an active role in the regulation of melanogenesis, J. Biol. Chem., 277, 33690 (2002). https://doi.org/10.1074/jbc.M202939200
  16. D. S. Kim, Y. M. Jeong, I. K. Park, H. G. Hahn, H. K. Lee, S. B. Kwon, J. H. Jeong, S. J. Yang, U. D. Sohn, and K. C. Park, A new 2-imino-1,3-thiazoline derivative, KHG22394, inhibits melanin synthesis in mouse B16 melanoma cells, Biol. Pharm. Bull., 30, 180 (2007). https://doi.org/10.1248/bpb.30.180
  17. J. Y. Jang, J. H. Lee, B. W. Kang, K. T. Chung, Y. H. Choi, and B. T. Choi, Dichloromethane fraction of Cimicifuga heracleifolia decreases the level of melanin synthesis by activating the ERK or AKT signaling pathway in B16F10 cells, Exp. Dermatol., 18, 232 (2009). https://doi.org/10.1111/j.1600-0625.2008.00794.x
  18. D. S. Kim, S. H. Park, S. B. Kwon, E. S. Park, C. H. Huh, S. W. Youn, and K. C. Park, Sphingosylphosphorylcholine- induced ERK activation inhibits melanin synthesis in human melanocytes, Pigment Cell Res., 19, 146 (2006). https://doi.org/10.1111/j.1600-0749.2005.00287.x
  19. W. Zhang, R. Tsan, D. H. Nam, W. Lu, and I. J. Fidler, Loss of adhesion in the circulation converts amelanotic metastatic melanoma cells to melanotic by inhibition of AKT, Neoplasia, 8, 543 (2006). https://doi.org/10.1593/neo.05655
  20. M. Oka, H. Nagai, H. Ando, M. Fukunaga, M. Matsumura, K. Araki, W. Ogawa, T. Miki, M. Sakaue, K. Tsukamoto, H. Konishi, U. Kikkawa, and M. Ichihashi, Regulation of melanogenesis through phosphatidylinositol 3-kinase-Akt pathway in human G361 melanoma cells, J. Invest Dermatol., 115, 699 (2000). https://doi.org/10.1046/j.1523-1747.2000.00095.x