• 제목/요약/키워드: 토크비

Search Result 493, Processing Time 0.039 seconds

The Experiment on PID Controller and State Feedback Controller using Rotational Inverted Pendulum (회전형 도립진자를 이용한 PID 제어기와 상태궤환 제어기의 선형제어 실험)

  • Jang, Hyeon-Seok;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.35-36
    • /
    • 2011
  • 본 논문은 불안정한 비선형시스템의 대표적인 플랜트인 도립진자를 이용하여, 비선형시스템의 선형화된 모델링에서 PID제어기와 상태궤환제어기의 제어역할을 연구한다. 우선 선형화시스템에서의 제어기를 구성한 후 회전형 도립진자를 모델링한다. 회전형 도립진자의 모델링은 실린더의 관성모멘트와 진자의 회전중심에 대한 모멘트의 관계를 토크를 기준으로 비선형 동적방정식 형태로 정리한다. 정리된 방정식을 선형화하여 컴퓨터 시뮬레이션을 통해 PID제어기와 상태궤환제어기의 제어특징과 성능을 비교 및 연구한다. 테스트용 회전형 도립진자를 이용하여 위에서 구성된 제어기로 제어가능한지 실험한다. 테스트용 회전형도립진자는 RealSYS사의 리얼시스 DSP Inverted Pendulum 2005년 생산품으로 실험한다.

  • PDF

Online MTPA Control of IPMSM for Automotive Applications Based on Robust Nonlinear Optimization Technique (비선형 최적화 기법에 기반한 자동차용 영구자석 동기전동기의 실시간 MTPA 제어)

  • Kim, Hyeon-Sik;Sul, Seung-Ki;Yoo, Hyunjae
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.71-72
    • /
    • 2017
  • 본 논문에서는 비선형 최적화 기법을 이용하여 자기 포화(magnetic saturation) 및 교차 결합 현상(cross-coupling effect)을 고려한 매입형 영구자석 전동기(IPMSM)의 실시간 MTPA 제어 방법을 제안한다. 이는 토크 지령 추종과 최소 동손 운전을 만족하는 제한 최적화(constraint optimization) 문제로 접근할 수 있다. 이를 통해 유도한 연립 비선형 방정식의 경우, Levenberg-Marquardt 수치 해석법을 적용하여 안정적이면서 빠르게 해를 구할 수 있다. 이러한 방법을 이용하면 참조표(look-up table) 없이 운전 환경의 실시간 변동을 고려한 효율적인 MTPA 운전이 가능하다. 시뮬레이션을 통해 제안된 알고리즘의 전류 해가 최적 운전점과 일치함을 확인하였다.

  • PDF

Study on the Performance Monitoring for a Pump using a Non-invasive Method (비침투적 방법을 이용한 펌프의 성능 감시 연구)

  • Noh, Ji-Seong;Cheon, Jung-Han;Kang, Seong-Ki;Lim, Chan-Woo;Chai, Jang-Bom
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.809-814
    • /
    • 2000
  • 이 연구의 목적은 비침투적으로 펌프의 유량을 알아내고, 이를 이용하여 펌프의 성능을 감시하는데 있다. 그리고 운전중인 펌프의 상태를 감시함으로써 펌프의 결함을 진단하는데 있다. 위 목적을 달성하기 위하여 본 연구에서는 비침투적으로 측정이 가능한 변수인 모터 토크와 회전속도를 이용하여 펌프의 성능을 예측할 때 필수석인 유량을 알아내는 Simulator를 개발하였다. 유량의 변화를 감시함으로써 펌프의 성능 변화를 감시하는 일반적인 방법을 적용하면 펌프의 성능을 효율적이며 경제적으로 감시를 하는데 이용할 수 있다.

  • PDF

Study on Properties of Pitch Control for Wind Turbine (풍력터빈의 피치 PI 제어기 특성 고찰)

  • Lim, Chae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.59-65
    • /
    • 2011
  • The aerodynamic power and torque of wind turbines are extremely nonlinear. Therefore, the overall dynamic behavior of a wind turbine exhibits nonlinear characteristics that are dependent on the magnitude of the wind speed. The nonlinear aerodynamic characteristics of the wind turbine also affect the characteristics of the control system of the wind turbine. Therefore, the analysis of the nonlinear aerodynamic characteristics of wind turbine is essential in designing the wind-turbine controller. In this study, the nonlinear aerodynamic characteristics and the effects of these characteristics on the closed-loop pitch system with PI controller for an 1-mass model of the wind turbine are investigated above rated power.

Experimental Investigation on Torsional Analysis and Fracture of Tripod Shaft for High-speed Train (고속열차용 트리포드 축의 비틀림 해석 및 파단에 대한 실험적 연구)

  • Lee, Joo Hong;Kim, Do Sik;Nam, Tae Yeon;Lee, Tae Young;Cho, Hae Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.979-986
    • /
    • 2016
  • The tripod shafts of constant-velocity joint are used in both the trains KTX and KTX-sanchon. It is an important component that connects the motor reduction unit and the axle reduction unit in a power bogie. The tripod shaft not only transmits drive and brake torque in the rotational direction, but also slides in the axial direction. If the drive system is loaded with an excessive torque, the fuse part of the shaft will be fractured firstly to protect the other important components. In this study, a rig was developed for conducting torsion tests on the tripod shaft, which is a type of mechanical fuse. The tripod shafts were subjected to torsional fracture test and torsional fatigue test on the rig. The weak zone of the tripod shaft was identified, and its fatigue life was predicted using finite element analysis (FEA). After analyzing the FEA results, design solutions were proposed to improve the strength and fatigue life of the tripod shaft. Furthermore, the deterioration trend and time for failure of the tripod shaft were verified using the hysteresis loops which had been changed with the advancement of the torsional fatigue test.

A Study on Rheology Properties of High Performance Wet-mix Shotcrete (고성능 습식 숏크리트의 레올로지에 관한 기초연구)

  • Choi, Sung-Yong;Yun, Kyong-Ku;Kim, Jin-Woung;Kim, Yong-Bin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.25-32
    • /
    • 2010
  • High performance shotcrete has been recently researched partly as a result of high consensus on high strength and durability. However, they are very initial step compared from the advanced countries. For instance, they has been mainly on high strength or durability without any consideration on pumpability and shootability which are very crucial on workability. The purpose of this dissertation was to make a high performance wet-mix shotcrete (high workability) which would solve the general problems of wet-mix process in Korea. For this, the main experimental variables were selected to be silica fume(0.0, 4.5, 9%), air entrained agent(0.0, 0.005%). Rheology with IBB rheometer was measured for evaluating pumpability and shootability as well as pump pressure, rebound rate and build-up thickness. The conclusions from a series of experiments were as follow: The results of analyzing the effects of AE agent and silica fume on rheology indicated that AE agent reduced both of flow resistance(G) and torque viscosity(H) and silica fume increased flow resistance (G) and reduced torque viscosity(H). An increase in the value of torque viscosity(H) produces an increase in the requried pumping pressure. These result indicated that the reduction of torque would work better at improving pumpability. And an increase flow resistance(G) improved shootability(increase build-up thickness and reduce rebound).

Implementation of the BLDC Motor Drive System using PFC converter and DTC (PFC 컨버터와 DTC를 이용한 BLDC 모터의 구동 시스템 구현)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.5
    • /
    • pp.62-70
    • /
    • 2007
  • In this paper, the boost Power Factor Correction(PFC) technique for Direct Torque Control(DTC) of brushless DC motor drive in the constant torque region is implemented on a TMS320F2812DSP. Unlike conventional six-step PWM current control, by properly selecting the inverter voltage space vectors of the two-phase conduction mode from a simple look-up table at a predefined sampling time, the desired quasi-square wave current is obtained, therefore a much faster torque response is achieved compared to conventional current control. Furthermore, to eliminate the low-frequency torque oscillations caused by the non-ideal trapezoidal shape of the actual back-EMF waveform of the BLDC motor, a pre-stored back-EMF versus position look-up table is designed. The duty cycle of the boost converter is determined by a control algorithm based on the input voltage, output voltage which is the dc-link of the BLDC motor drive, and inductor current using average current control method with input voltage feed-forward compensation during each sampling period of the drive system. With the emergence of high-speed digital signal processors(DSPs), both PFC and simple DTC algorithms can be executed during a single sampling period of the BLDC motor drive. In the proposed method, since no PWM algorithm is required for DTC or BLDC motor drive, only one PWM output for the boost converter with 80 kHz switching frequency is used in a TMS320F2812 DSP. The validity and effectiveness of the proposed DTC of BLDC motor drive scheme with PFC are verified through the experimental results. The test results verify that the proposed PFC for DTC of BLDC motor drive improves power factor considerably from 0.77 to as close as 0.9997 with and without load conditions.

In Vitro Study on the Initial Stability of Two Tapered Dental Implant Systems in Poor Bone Quality (연질 골에서 두 종류의 테이퍼 형태 임플란트의 초기 안정성에 관한 실험실적 연구)

  • Kim, Duck-Rae;Kim, Myung-Joo;Kwon, Ho-Beom;Lee, Seok-Hyung;Lim, Young-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.391-401
    • /
    • 2009
  • The successful outcome of dental implants is mainly the result of intial implant stability following placement. The aim of this study was to investigate the effect of a self-tapping blades and implant design on initial stability of two tapered implant systems in poor bone quality. The two different implant systems included one with self-tapping blades and one without self-tapping blades. D4 bone model using Solid Rigid Polyurethane Form was used to simulate poor bone densities. The insertion torque during implant placement was recorded. Resonance frequency Analysis (RFA), measured as the implant stability quotient (ISQ), was assessed immediately after insertion. Finally, the implant-bone specimen was transferred to an Universal Testing Machine to measure the axial pull-out force. Insertion torque values and maximum pull-out torque value of the non self-tapping implants were significantly higher than those in the self-tapping group (P = 0.008). No statistically differences were noted between the two implant designs in RFA. Within the each implant system, no correlation among insertion torque, maximum pull-out torque and RFA value could be determined. Higher insertion torque of the non-self-tapping implants appeared to confirm higher clinical initial stability. In conclusion, implants without self-tapping blades have higher initial stability than implants with self-tapping blades in poor bone quality.

Efficiency Optimization Control of SynRM Drive using Multi-AFLC (다중 AFLC를 이용한 SynRM 드라이브의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jang, Mi-Geum;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.44-54
    • /
    • 2010
  • Optimal efficiency control of synchronous reluctance motor(SynRM) is very important in the sense of energy saving and conservation of natural environment because the efficiency of the SynRM is generally lower than that of other types of AC motors. This paper is proposed a novel efficiency optimization control of SynRM considering iron loss using multi adaptive fuzzy learning controller(AFLC). The optimal current ratio between torque current and exciting current is analytically derived to drive SynRM at maximum efficiency. This paper is proposed an efficiency optimization control for the SynRM which minimizes the copper and iron losses. There exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization control is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. The control performance of the proposed controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

Evaluations on Performances of a Non-Contact Torque Measurement Technique for Rotatory Machinery (회전기계용 비접촉식 토크 측정법 성능 평가)

  • KIM, YEONGHWAN;KIM, YEONGHO;CHO, GYEONGRAE;KIM, UEIKAN;DOH, DEOGHEE
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.6
    • /
    • pp.642-647
    • /
    • 2018
  • Gas compressors are mostly driven by motors. It is important to measure the power of motors to evaluate their power efficiency, because the mechanical loads of gas compressors are always varied. In order to measure the power given to the driving motors, the torque should be measured. Manufacturers of compressors usually use the torque data to calculate the compressors qualities such as power consumption, efficiencies and failures. In general, measurements for the shaft torque of the compressors have been based upon contact types, strain gauges. In the cases of larger compressors, the contact type of strain gauges have several disadvantages such as large size and high cost. In this study, a relatively inexpensive and simple torque sensing technique that is not restricted to shaft diameter is introduced using visualization technique. Particle image velocimetry (PIV) has been adopted to complete non-contact torques measurements for rotating motors. In order to compare the performance of the newly constructed torque measurement technique, torque measurement by a transducer based on MEMS technology has been performed simultaneously during experiments.