DOI QR코드

DOI QR Code

Experimental Investigation on Torsional Analysis and Fracture of Tripod Shaft for High-speed Train

고속열차용 트리포드 축의 비틀림 해석 및 파단에 대한 실험적 연구

  • Lee, Joo Hong (Reliability Assessment Center, Korea Institute of Machinery & Materials) ;
  • Kim, Do Sik (Reliability Assessment Center, Korea Institute of Machinery & Materials) ;
  • Nam, Tae Yeon (Reliability Assessment Center, Korea Institute of Machinery & Materials) ;
  • Lee, Tae Young (KATEM) ;
  • Cho, Hae Yong (Dept. of Mechanical Eng., Chungbuk Nat'l Univ.)
  • Received : 2016.06.27
  • Accepted : 2016.08.27
  • Published : 2016.11.01

Abstract

The tripod shafts of constant-velocity joint are used in both the trains KTX and KTX-sanchon. It is an important component that connects the motor reduction unit and the axle reduction unit in a power bogie. The tripod shaft not only transmits drive and brake torque in the rotational direction, but also slides in the axial direction. If the drive system is loaded with an excessive torque, the fuse part of the shaft will be fractured firstly to protect the other important components. In this study, a rig was developed for conducting torsion tests on the tripod shaft, which is a type of mechanical fuse. The tripod shafts were subjected to torsional fracture test and torsional fatigue test on the rig. The weak zone of the tripod shaft was identified, and its fatigue life was predicted using finite element analysis (FEA). After analyzing the FEA results, design solutions were proposed to improve the strength and fatigue life of the tripod shaft. Furthermore, the deterioration trend and time for failure of the tripod shaft were verified using the hysteresis loops which had been changed with the advancement of the torsional fatigue test.

등속조인트의 일종인 트리포드 축은 동력전달용으로 고속열차의 KTX와 KTX-산천에 모두 적용되고 있으며, 동력대차에서 모터 감속장치(MRU)와 차축 감속장치(ARU)를 연결해 고속회전동력을 전달하는 핵심 요소이다. 축 방향의 미끄럼 운동이 가능한 트리포드 축은 열차 구동을 위한 토크를 전달하며, 동력전달 시스템에 과토크 발생 시 축의 퓨즈부가 절단되어 동력을 차단한다. 본 연구에서는 리니어 액추에이터를 이용한 대용량 비틀림 시험장치의 개발과 이를 이용한 트리포드 축의 정적 비틀림 강도와 피로수명을 확인하고자 하였다. 또한 구조해석을 통해 축의 취약부를 파악하고 비틀림 피로해석 결과와 실제 피로시험의 결과를 비교분석하여 비틀림 성능 개선을 위한 설계안을 제시하고자 하였다. 한편 트리포드 축의 피로에 따른 열화를 파악하기 위해 히스테리시스 곡선을 이용하였으며, 히스테리시스 곡선의 기울기 변화를 통해 피로고장 시점을 확인하였다.

Keywords

References

  1. Lee, J. H., Kang, B. S., Rye, H. S., Lee, J. M. and Cho, H. Y., 2016, "Development Test of Flexible PTO Shaft Used by Ti Alloy for Aircraft," Trans. Korean Soc. Mech. Eng. A, Vol. 40, No. 8, pp. 759-765. https://doi.org/10.3795/KSME-A.2016.40.8.759
  2. Kim, S. S., Kim, Y. G., Kim, K. H. and Park, C. S., 2007, "Torque Measurement of Tripod Shaft for HSR-350x," Journal of the Korean Society for Railway, Vol. 10, No. 6, pp. 660-664.
  3. Lee, D. H., Kwon, S. J., Park, B. S., Cho, D. Y. and Kim, J. W., 2013, "Development of Condition Monitoring System for Reduction Unit of Highspeed Rail," J. Korean Soc. Precis. Eng., Vol. 30, No. 7, pp. 667-672. https://doi.org/10.7736/KSPE.2013.30.7.667
  4. Jung, D. W., Choi, N. S. and Park, S. H., 2009, "S-N Curve Deduction of a KTX High-Speed Train Structure for an Accelerated Life Testing," Trans. Korean Soc. Mech. Eng. A, Vol. 33, No. 4, pp. 388-395. https://doi.org/10.3795/KSME-A.2009.33.4.388
  5. Ji, H. Y., Lee, K. H., Kim, J. C., Lee, D. H. and Moon, K. H., 2013, "Fault Diagnosis of a Highspeed Railway Reduction Unit Using Analysis of Vibration Characteristics," Journal of the Korean Society for Railway, Vol. 10, No. 6, pp. 26-31.
  6. Lee, C. W. and Lee, D. H., 2012, "Fatigue Life Evaluation of Motor Block Bracket Units for KTXSancheon Trains," Journal of the Korean Society for Precision Engineering, Vol. 29, No. 6, pp. 626-631. https://doi.org/10.7736/KSPE.2012.29.6.626
  7. Ko, J. B., Kim, W. K. and Won, J. H., 2005, "The effect on Fatigue Strength of Induction Hardened Carbon Steel," Transactions of the Korean Society of Machine Tool Engineers, Vol. 14, No. 6, pp. 83-87.
  8. Korea Railroad Research Institute, 2014, Development of Condition Monitoring System for Reduction Unit of High Speed Trains, pp. 45-47.
  9. Korea Railroad Research Institute, 2013, Development of Technology for Localization and Performance Enhancing of Existing Railway Coreparts, pp. 45-50.
  10. ASTM E606/E606M-12, 2012, "Standard Test Method for Strain-Controlled Fatigue Testing," ASTM International
  11. Novovic, D., Dewes, R. C., Aspinwall, D. K., Voice, W. and Bowen, P., 2004, "The Effect of Machined Topography and Integrity on Fatigue Life," International Journal of Machine Tools & Manufacture, Vol. 44, pp. 125-134. https://doi.org/10.1016/j.ijmachtools.2003.10.018
  12. Cheong, S. K., Lee, S. H. and Chung, S. C., 2001, "Effect of the Peening Intensity by Shot Peening," Trans. Korean Soc. Mech. Eng. A, Vol. 25, No. 10, pp. 1590-1596. https://doi.org/10.22634/KSME-A.2001.25.10.1590
  13. Yeom, H. H., Lee, M. G., Lee, C. M. and Jeon, Y. H., 2013, "Effect of Surface Treatment on Fatigue Strength of SCM440H," Journal of the Korean Society for Precision Engineering, Vol. 30, No. 8, pp. 779-784. https://doi.org/10.7736/KSPE.2013.30.8.779

Cited by

  1. Study on the loading capacity of the tripod type couplings with external contacts vol.444, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/444/2/022020
  2. An Experimental Study of the Lifetime of a Tripod Shaft with Torsional Fatigue Using an Accelerated Life Test Method vol.19, pp.9, 2018, https://doi.org/10.1007/s12541-018-0165-1
  3. Anomaly detection of tripod shafts using modified Mahalanobis distance vol.32, pp.6, 2018, https://doi.org/10.1007/s12206-018-0504-2