• Title/Summary/Keyword: 탄성하중법

Search Result 372, Processing Time 0.019 seconds

Method to Determine Elastic Follow-Up Factors to Predict C(t) for Elevated Temperature Structures (이차하중을 받는 고온 구조물의 C(t) 예측을 위한 탄성추종 계수 결정법)

  • Lee, Kuk-Hee;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.759-768
    • /
    • 2012
  • This paper proposes a method to determine the elastic follow-up factors for the $C(t)$-integral under secondary stress. The rate of creep crack growth for transient creep is correlated with the $C(t)$-integral. Elastic follow-up behavior, which occurs in structures under secondary loading, prevents a relaxation of stress during transient creep. Thus, both the values of $C(t)$ and creep crack growth increase as increasing elastic follow-up. An estimation solution for $C(t)$ was proposed by Ainsworth and Dean based on the reference stress method. To predict the value of $C(t)$ using this solution, an independent method to determine the elastic follow-up factors for cracked bodies is needed. This paper proposed that the elastic follow-up factors for $C(t)$ can be determined by elastic-plastic analyses using the plastic-creep analogy. Finite element analyses were performed to verify this method.

Buckling oad and Post-buckling Behavior of Tapered Column with Constant Volume and Both Clamped Ends (일정체적 양단고정 변단면 기둥의 좌굴하중 및 후좌굴 거동)

  • 이병구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.112-122
    • /
    • 1999
  • 이 논문은 일정체적을 갖는 양단고정 변단면 기둥의 좌굴하중 및 후좌굴 거동에 관한 연구이다. 기둥의 변단면으로는 직선형, 포물선형, 정현의 선형을 갖는세 가지 변단면을 채택하였다. Bernoulli-Euler 보 이론을 이용하여 압축하중이 작용하여 좌굴된 기둥이 정확탄성곡선을 지배하는 미분방정식을 유도하였다. 유도된 미분방정식을 Runge-Kutta 법과 REgula-Falsi법을 이용하여 수치해석하였다. 수치해석의 결과로 좌굴하중, 좌굴기둥의 평형경로 및 정확탄성곡선을 산출하였다. 또한 좌굴하중-단면비 곡선으로부터 최강기둥의 좌굴하중과 단면비를 산출하였다.

  • PDF

Behavior of Elastic and Plastic Limit Loads of Thinned Elbows Observed During Real-Scale Failure Test Under Combined Load (감육엘보 실증실험에서의 탄성 및 소성 한계하중 거동 고찰)

  • Lee, Sung-Ho;Lee, Jeong-Keun;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1293-1298
    • /
    • 2010
  • In most power plants, wall thinning in carbon-steel pipes due to flow-accelerated corrosion is one of the major aging phenomena, and it reduces the load-carrying capacity of the piping system. Various types of wall-thinning defects were manufactured in real-scale elbows, and monotonic in-plane bending tests were performed under internal pressure to evaluate the failure behavior of the elbows. In this paper, the behavior of elastic and plastic limit leads of locally thinned elbows in a real-scale failure test is presented. The loads determined on the basis of TES (twice elastic slope) were considered to be the limit loads of locally thinned elbows so that the integrity of the thinned elbows could be maintained, even when a small amount of plastic deformation might have occurred.

Mechanical Properties of Minerals in Daejeon Granite According to Depths by Dynamic Ultra-micro Hardness (동적 초미소 경도법에 의한 심도별 대전화강암 내 광물들의 역학적 특성)

  • Choi, Junghae;Shin, Juho;Jang, Hyongdoo;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.172-184
    • /
    • 2017
  • The hardness and mechanical properties of the minerals in the Daejeon granite according to depths were investigated by indentation test, load-unload test, and cycle test of dynamic ultra-micro hardness. As a result of the tests, it was possible to classify into three mineral groups (Group-1, -2, -3). The Martens hardness was not significantly different between 41 m and 223 m depths in three mode tests. Nevertheless, they showed in the order of a cycle test < load-unload test < indentation test. Considering the average Martens hardness, elastic modulus, and indentation work for each mineral group, their boundaries were relatively clear. In conclusion, A relatively accurate hardness of minerals can be obtained by three mode tests of dynamic ultra-micro hardness. In addtion, it was possible to characterize the elastic modulus and the elastic-plastic properties of the minerals from the load-unload and cycle tests.

A Study on the Static Analysis of the Cintinuous Curved Box Girder Bridge using Energy Method (에너지법에 의한 연속 곡선박스형교의 정적해석에 관한 연구)

  • Chang, Byung Soon;Seo, Sang Keun;Lee, Dong Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.163-176
    • /
    • 2001
  • In this paper, the stress resultants and displacements of simply supported curved girder based on the flexural torsional theory considering torsional warping effects are analyzed. And elastic equations of continuous curved girder are obtained by using energy method. Also, bending moment warping torsional moment diagram, pure torsional moment diagram, shearing force diagram, and deflection diagram of continuos curved girder bridge subjecting to vertical loads and uniform loads are presented.

  • PDF

A Comparative Study of LRFD Methods Using Linear Elastic and Nonlinear Inelastic Analysis (선형탄성해석 및 비선형비탄성해석을 이용한 LRFD 설계법의 비교 연구)

  • Jang, Eun Seok;Park, Jung Woong;Kim, Seung Eock
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.633-642
    • /
    • 2007
  • Although the Load and Resistance Factor Design (LRFD) method is an advanced design approach, it does not accurately capture the interaction between individual members and structural system. A nonlinear inelastic analysis for the entire structure is required to solve this problem. According to many design codes of advanced countries, a nonlinear inelastic analysis can be applied to predict the structural behavior and strength reasonably. In this study, an LRFD design method using practical nonlinear inelastic analysis was proposed. Design examples using the proposed method waspresented, and the economical efficiency and adequacy of the proposed method was investigated by comparing the design results with that of the AISC-LRFD. It has been consequently demonstrated that the proposed method can reduce the construction cost through savings in steel.

Seismic Capacity Evaluation of Bridge Structure using Capacity Spectrum Method (역량스펙트럼법에 의한 교량 구조물의 내진성능평가)

  • 박연수;오백만;박철웅;서병철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.67-73
    • /
    • 2003
  • The present seismic analysis of Road-Bridge Design Standard is on a basis of load-based analysis which lets structures have the strength over load. In this study, the capacity spectrum method, a kind of displacement based method, which is evaluated by displacement of structure, is presented as an alternative to the analysis method based on load. Seismic capacity is performed about the existing reinforced concrete pier which has already secured seismic design by capacity spectrum method. As a result. capacity spectrum method could realistically evaluate the non-elastic behavior of structures easily and quickly and the displacement of structures for variable ground motion level. And it could efficiently apply to an evaluation of seismic capacity about the existing structure and a verification of design for capacity target of the new structure.

Material Stress Fringe Constant Measurement of Specimen under Pure Bending Load by Use of Photoelastic Phase Shifting Method (광탄성 위상이동법을 이용한 순수굽힘보 시편의 재료 응력 프린지 상수 측정)

  • Liu, Guan Yong;Kim, Myung Soo;Baek, Tae Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1387-1394
    • /
    • 2014
  • In a photoelastic experiment, it is necessary to know the material stress fringe constant of the photoelastic specimen to determine the stresses from the measured isochromatic fringe orders. The material stress fringe constant can be obtained using a simple tension specimen and/or a circular disk under diametric compression. In these methods, there is generally a need to apply numerous loads to the specimen in response to the relationship of the fringe order. Then, the least squares method is used to obtain the material constant. In this paper, the fringe orders that appear on a four-point bending specimen are used to determine the fringe constant. This method requires four photoelastic fringes obtained from a circular polariscope by rotating the analyzer to 0, ${\pi}/4$, ${\pi}/2$, and $3{\pi}/4$ radians. Using the four-point bending specimen to determine the material stress fringe constant has an advantage because measurements can be made at different locations by applying a constant load. The stress fringe constant measured with this method is within the range suggested by the manufacturer of the photoelastic material.

Relationship between Concrete Pavement Stresses under Multi-Axle Interior and Edge Loads (중앙부와 모서리부 다축 차량 하중에 의한 콘크리트 도로포장의 응력 상관관계)

  • Kim Seong-Min;Cho Byoung-Hooi;Ryu Sung-Woo
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.143-153
    • /
    • 2006
  • The differences in the stress distribution and the critical stresses in concrete pavement systems were analyzed when the dual-wheel single-, tandem-, and tridem-axle loads were applied at the interior and the edge of the pavement. The effects of the concrete elastic modulus, slab thickness, foundation stiffness, and tire contact pressure were investigated. The stresses under the interior loads were calculated using the transformed field domain analysis and stresses under the edge loads were obtained using the finite element method. The critical stresses under the interior and the edge loads were compared with respect to various parameters and the equations to predict the ratio between the stresses under the edge and the interior loads were developed and verified. From this study, it was found that the trends of the changes in the critical concrete stresses under the interior and the edge loads were very similar and the critical stress locations under those loads were identical. The critical stress ratio, which was obtained by dividing the critical stress under the edge loads into that under the interior loads, decreased with increasing the number of axles. That ratio became larger as the concrete elastic modulus increased, the slab thickness increased, the foundation stiffness decreased, and the tire contact pressure increased.

  • PDF

The Earth Pressure on the Effect of Surcharge Load at the Narrowly Backfilled Soil (좁은 공간 되메움 지반에서의 상재하 영향에 의한 토압)

  • 문창열;이종규
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.165-180
    • /
    • 1997
  • The structure such as underground external walls of buildings, conduit and box culvert supports the surcharge loads (point, strip and line loads) . The vertical and horizontal stresses in a soil mass depend on the backfill width and wall friction, etc. The investigations described in this paper is designed to identify the magnitude and the distributions of the lateral and vertical pressure which is occurred by the narrowly backfilled soil in an open cut by the surcharge loads. For these purposes, model tests were performed for various width of backfill in a model test box by considering the wall friction using carbon rods. The results of test were compared with the theories of Weissenbach and VS Army Code and also with the results of the numerical analysis using finite difference method which introduces Mohr-Coulomb failure hypothesis.

  • PDF