Buckling Load and Post-buckling Behavior of Tapered Column
with Constant Volume and Both Clamped Ends
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]. Introduction Rojzhn,” Wang.® Wilson and Snyder.” Lee'”
and Chucheepsakul ef al
The first study of the elastica was Since columns are basic structural forms,

published by Euler.”
literature on lhis subjyect was published by
Schridt Da

applications of elastica

A survey of the classical

and Deppo.Z) Present-day
included statics and
dynamics problems were discussed by Wilson
and Mahajan” and Lee et a].,‘“ respectively.
Other works related to the present studies,
especially those involving uniform beams, were

studied by Love” Timoshenko and Gere,”

these units have been widely used in varlous
both
the buckling loads and postbuckling behaviors

engineering flelds. In column problems,
are very important to structural design. The
column behavior under loads depends on the
cross-sectional shape, taper type and volume

¥ Especially estimating the

of the column.
buckling loads of nonprismatic columns, which

have the same volume with specific length,
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7181 = : Bernoulli-Euler beam theory, buckling load,
constant volume, elastica, equilibrium path,
strongest column, tapered column.
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are attractive in the viewpoint of optimal

! attempted to deter-

design. Since Lagrange™
mine the optimum shape for a column, many
investigators including Clausen.””  Keller,'®
Tadjbakhsh and Keller,”” Barnes,'® and Cox
and Overton'” determined the shape of the
strongest column which is defined as the
elastic column of a given length and volume
which can carry the highest axial load without
buckling. In the most previous works related
on the strongest column, only the equilateral
triangular, square and circular were considered
as the cross-section. Considering the erecting
condition and the aesthetic viewpoint, the
cross-sections of regular polygon are someti-
mes needed in the practical engineering fields.
Nowhere in the open literature gave the
solutions for the class of elastica problems
considered herein : the elastica and buckling
load of non-uniform or tapered columns of
regular polygon cross-seclion with constant
volume, whose cross-sectional depths are
varied by functional fashions. Therefore the
main purpose of this paper is to investigate
both the buckling load and elastica of such
columns.

In the analysis of elastica, one usually
begins with classical Bernoulli-Euler beam
theory and the non-linear differential equation
that relates deflection to load. This beam
theory is also used in the present analytical
studies. The following assumptions are inher-
ent in this theory : the column is linearly
elastic, the neutral axis for bending is
incompressible, and trangverse shear deform-
ations are negligible.

Historically, solutions of elastica have four
forms @ (1) closed-form solutions in terms of

elliptic integrals : (2) power series solutions :

(3) numerical soluljons : and (4) experimental
should be
classified into the numerical solutions.

solutions. The present study

II. Object Column

Shown in Fig. 1(a) is the object column of
specific length 7/ and of constant volume V.
All the columns analyzed in this study have
the same length and the same volume. Iis
cross-sectional shape is fhe regular polygon,
whose cross-sectional depth depicted as h
varies with the axial length s. The area and
area moment of inertia of cross section
depicted as A and I, respectively, vary with s.
Fig. 1{b) shows the variation of depth h with
s. As shown in this figure, the depth h is
varied by functional fashion, and depths h at
s=0 and / and al s= /2 are hs and hgm,
respectively. For defining geometry of column.
a non-dimensional system parameter or section

ratio n is introduced as follows,

The area A and area moment of inertia of

polygon
cross-section with integer m of side number

(a) P
E h, A1
= constant volume, V.
TR

!

cross section I of the regular

Ty

2 32

Fig. 1. Column with constant volume and its
variation of cross-sectional depth
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and cross-sectional depth h are given by

equations (2) and (3), respectively.

A=ch? s (2)
T = Gpteeeeree et (3)
where

¢, =msin(z/m)cos(m/m) «eorreeeeeeeeenenees (4.1)

¢y =m sin(7/m) cos *(x/m)[ 1 + tan %(x/m)/31/4

in which it is clear lhat values of ¢ and <
with infinite number m(ee), namely circular
cross—section, are converged to z and =x/4,
respectively, Also, it is noted that every axis
polygon
cross—section is a principal axis and has the

across the centroid of regular
same area moment of inertia of cross section
given in equation (3).

Now, consider the functional equations of
variable depth h. It is natural that all columns
whose variable depth are prescribed should be
the object ones, In this study, the linear,
parabolic and sinusoidal tapers are chosen as
the variable depth h of tapered columns. First,
the equations h of linear taper through three
points of (0, he), (2, nhe) and (/4 hg) in
rectangular co-ordinates (s, h) are obtained as

follows.

h=hg[2;(s/ D+1], 0=s= /2 } (5)
h=h0[-2Cd(S/ l)+2Cd+1], l/zgsgl

where

The column's volume V «can now be

calculated by using equations (2) and (5) :

V:folAds'ﬂC,;(C]h%l) ........................... (7)
where
ci=V/(ethiD =@ +n+1)/3 -oerrrrmnnn (8)

In the above equation, ¢y is defined as a
ratio of constant volume V to volume of
uniform column of regular polygon cross-
section with depth hy, ciho’

Second, the equations h and cs of parabolic
taper are given by equations (9) and (10),
respectively.

h=hel —4c;(s/ D¥+4cy(s/ D+1], O<s=<]

Finally, the equations h and ¢4 of sinusoidal
taper are as follows, respectively.

h=hgle;sin(zs/ D +1], 055 - rvrveveenens (11)
Ca={(n—1)2/24F4(n—1)/m4 1 -errerromreren (12)

In equations (9) and (11), c3 is defined in
equation (6),

. Mathematical Model

The symbols and loading for the column
defined in above section are depicted in Fig. 2.
The clamped-clamped ends support the
column. The column subjected to a compre-
ssive end load P less than the buckling load

B is perfectly straight. But when the P exc-
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M, M,
W’/f/ﬂ'/. s
R S P=B,

AR, e
H A ‘I
! 1

Fig. 2. Variables of elastica of buckled column

eeds the B, the column is buckled. The
dashed line and the solid curve are the
neutral axes of the unbuckled and buckled
column, respectively. Thus the shape of
elastica is the solid curve defined by the (x,
y) co-ordinate system whose origin is at left
end. At material point (x, y), the column's
arc length is s, and the variable area and area
moment of inertia of cross section taken with
respect to s are A and I, respectively. The
rotafion of cross-section and bending rmoment
are depicted as 0 and M, respectively, in this
figure. It is noled that the axis length of
buckled column maintains its length / due to
incompressibility of column, and therefore the
s value at right end is / The end moments
at both ends (s=0 and s= 1)

horizontal displacement at right end (s= 1)

and the

are Mg and 4, respectively. It is assumed that
Bernoulli-Euler theory governs the buckled
column behavior under load, for which the
differential equations for the elastica are as

follows.®’
d6/ds = (Mg —Py)/EL, Q=g [-eemmveeeneens (13)
AX/dS =08 0, (LG [ wrrreereereerenrsuecrnnees (14)
Ay/dS =SNG, 0LSE [ wrerevrreeressmnererenns (15)

where E is Young's modulus and the term
of (Mp-Py) in equation (13) is the bending
moment M at the material point (x, v).

Since lhe horizontal and vertical displace-
ments, and rotation at left end (s=0) are not

allowed, the following boundary conditions are

obtained :
B I | T P (16)
N | PO an
G=() AL § = (rrrrreeerreemrrremmerremrmsiarsesnianns (18)

Since the rotation at mid-peint of column
axis (s= [/2) is zero due to the symmetry of
column geometry, the boundary conditlon is
given by equation (19).

=0 at g=[/2 -oerrrmrmmmermmn (19)

To facilitate the numerical studies and to
obtain the most general results for this class
of problem, the axial load, the end moment,
the geornetric parameters, and the governing
differential

conditions are cast in the following non-

equations with their boundary

dimensicnal forms.
The load parameters p and mo are defined
as equations (20) and (21)

D=P B/(REL) rervvrerirmmmnsonnnniiiinn (20)
Mo= Mg [/ (TEL,) rreeeeremrrerremesmnsnns (21)

where | is the area moment of inertia of
circular cross-section of uniform column whose

volume is V, defined as equation (22).
L= V2 (AR B ereeernmermmn s (22)

It is noted that the load parameters p and
my are defined by using the constant volume
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V and the specific length [/ in order to

compare all the responses of columns
regardless of taper type, side number m and
section ratio n.

The arc length s and coordinates (%, y) are

normalized by the column length L

A:s/[ ................................................ (23)
Emxt) [ eeermeermeene e (24)
P y] 1 veeeeees e (25)

The displacement 4 of right end (s= ) is
also normalized by £

When equation (3) is combined with either
equation (5) or equation (9) or equation (11),
and equations (20)~(25) are used, the non-
dimensional form of equation (13) becomes as
follows.

db/dA=ncici(my—pp/(4csi), 0<a<] -(27.1)
where

for linear taper :

i=2c A+ DY 05205 ) e (27.2)
i={~2cA+2,+D1* 0.5<1=1
for parabolic taper :
i=(—degd?+4ezd+ 14, 0=AK]meemeee (27.3)
for sinusoidal taper :
i=[c3sin(7r/1)+1]4, DS A L rreevrreneosannens (27.4)

It is recalled that the coefficients ci-cs of
differential equation (27.1) with equations
(27.2) ~(27.4) contain the side number m and

section ratio n, respectively, as shown in the
previous section.

Further, with equations (23)~(25), equat-
ions (14) and (15) become as follows,

dE/dA= o5 8, QAL rreremvrorrrneeermannnnnnnens (28)

A7/dA= 8in 0, (LAL ] -verrermmrmreeemnneans (29)

The non-dimensional forms for boundary
conditions of equations (16)~(19) are obtained
by equations (23)~(25):

E=0 At A== (errremremsrerrortaratoneieneenes (30)
D=0 Bt A== (ereerrrerrrmremeae e sesiens (31)
T R S PR (32)
T P L SO (33)

IV. Numerical Methods

Based on above analysis, the algorithm was
developed to solve differential equations (27.1),
(28) and (29). The Runge-Kutta and Regula-
Falsi methods?’ were used to integrate
differential equations and to determine the
end moment mo at A=0 for a given geometry
of column. This algorithm is summarized as
follows.

(1) Specify taper type (linear/parabolic/
sinusocidal), geometry (m and n), and load p.
Calculate ¢i-¢4. It is recalled that m is the
integer number of sides of regular polygon
cross-section.

(2) Assume a trial value mow in which
first trial value is zero.

(3) Integrate equations (27.1), (28) and
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(29)  with the
equations (30) ~(32) in the range from A=0
to 1/2 using the Runge-Kutta method. The
8= 8(2),

boundary conditions of

results give trial solutions for

§=4&(A) and 5= (4.

(4) Set D= 6(1/2). If the value of mow
assumed In slep 2 is the characteristic value
of the elastica, then D must be zero due to
equation (33). The first criterion for converge-
nce of the solutions is | D | <1x107,

(b) If the value of D does not satisfy the
first convergence criterion, then increment the
previous value of muowm.

(6) Repeat steps (3)~(5) and note the
sign of D in each iteration. If D changes sign
between two consecutive values mpqy and
morzy of mow. then the characteristic value my
lies between mo) and mo.

(7) Compute an Iimproved value of muw
based on its two previous values using the
Regula-Falsi method. The second criterion for
convergence of solutions is | (mow-mow)/ o |
<1%107.

(8) Terminate the calculations when two
convergence crileria are met. Print the final
solutions to the elastica, 6= 06(1), £€= &A1) and
7=7(A), and then compute the displacement
8=1-2 £(1/2). It is noted that 6, £ and 7 in
the range of 1/2{(2<l can be calculated by
the symmetry of column geometry. If there is
no solution, which means that D does not
change sign till the trial value of moq reaches
p/2 because the mg value can not be larger
than p/2 physically, the specified p is less
than b and the column is still straight. Here,
b is the buckling load parameter defined as

follows. 2

b=B12/(ﬂ2EIe) .................................... (34)

Also, the buckling load parameters b were
calculated in a straightforward way using the
differential equations. Just after the column is
buckled, all
including mo are close to zero. In this study,

values of column behavior
the buckling load parameter b is approxim-
ately equivalent to the load parameter p
whose end moment mg is 1x1077° ie. nearly
zero but not zero. Specify column taper, m, n,
of course not p and set me=1x10"" in
equation (27.1). And assume the trial value p
instead of mow in step 2. Remaining nume-
rical procedures are same as above procedure,
and of course the characteristic value of
equation (27.1) is p which is now an approxi-
mate buckling load parameter b.

Based on these algorithms, two FORTRAN
computer programs were written to solve the
elastica and buckling load, respectively. Al
computations were carried on a notebook
computer with graphics support. For all of the
numerical results presented herein, a step size
of A41=(1/2)/50 in the Runge-Kutta method
was found to give convergence for mo and b
to within three significant figures. The
numerical results are now discussed in next

section.

V. Numerical Results and Discussions

First considers the elastica problem. Shown
in Fig. 3 are the equilibrium paths of linear
taper with m=3, 4 and c (circular cross-
section) for n=05, which represent the end

moment my and deflections (& and 7.)
versus p curves after buckling. Here, 7, is

defined as value of 7 at column's mid-point
(A=1/2). The nonlinear responses of mo and

¢ increase as p increases. those of 7y, reach
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2.5
7 linear aper, n=0.3
] : triangular cross-section(m=3)
| — - —: rectangular cross-section{m=4)
20~ =--=-- : circular cross-section(m=co)
[ : buckling load parameters
s 1.5~
o= 4
=) ]
] p
E 1o
A
0.3 Ky,
1 Je
1 /L
1 wir
0.0 T T T
3 4 3 6 7 8

p
Fie. 3. Equilibrium path of linear taper with n=0.5
by side number m

peaks as p is increased. The increasing rates
of all responses are higher in lower p.
Especially the rates are very high just after
the colurnns are buckled. Just after buckling
of the column, as the integer number m
increases from m=3 to m=4 to m=c¢ (o),
all responses increase, other paramelers rem-
aining constant. But it is true that in case of
response g and 7, the fact is reversed
when p exceeds some characteristic value. It
is seen that the p values marked by 0O are
the  buckling  load
corresponding columns. For example, the b of
m=3 is 3.888.

Shown in Fig. 4 are the equilibrium paths

parameters b of

of parabolic, sinuscidal and linear tapers for
m=3 and n=05. Just after buckling, as the
taper type is changed from parabolic to
sinusoidal to linear taper, the response of mp
increases corresponding to this change, other
parameters remaining constant. Also, the
buckling load parameters are marked by [J on

the p axis.

3.0
] ttiangular cross-section(m=3), n=0.5
b : paraboli¢ taper
5 5; = - — - sinusoidal raper
B : linear taper
j O : buckling load parameters
2.0-]
£ ]
@ 1.5+
s ]
E ]
1.0
0.5
0.0t
f LR = e A LA B LA L L o
3 4 E 6 7 8 9 10
p

Fig. 4. Equilibrium path of columns with m=3 and
n=0.5 by taper type

0.4
| linear taper, n=0.3, p=4.1

0.3

= 0.2+

Fig. 5. Elastica of linear taper with n=0.5 and p=4.5
by side number m

Figure 5 shows the elastica of linear taper
with m=3, 4, 5 and c for n=05 and p=45.
From this figure, as the m wvalue increases
from 3 to ¢, the horizontal and vertical
deflections increase.

Second considers the buckling load problem.
For the purpose of validation of this study,
the buckling load parameters b predicted by
the present theory are compared to those
available in references in Table 1 which shows
the results of this study agree quite well with
the reference values.

Shown in Figs. 6-8 are the b versus n
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Table 1. Comparisons of b between this study and

references
Buckling lead parameter, b
Geometry -
This study Reference

n=1" m=c bh=40 40 of ref [AT"
n=0836, m=3 | h=4929 4.927
n=0836, m=4 b=4.269 4.270
n=0836, m=5| b=4145 | 4145 |of ref[A]"
n=0836, m=c b=4.076 4.076

parabolic

*¥If n=1, the columns are uniform regardless of
taper types. See equations (27.2)~(27.4)
+[A] : Timoshenko and Gere”, [B] : Lee and On™

6.0
linear taper
O : strongest columns
5.0
b m=3
4.0
p 4
o 3.0+ 5
¢
2.04
1.0
O.CIlllIlFIrlrrlfllllVlllll
0 1 2 3 4 5

n
Fig. 6. b vs. n curves of linear taper by side number m

curves of columns with m=3, 4, 5 and ¢ for

linear, parabolic and  sinusoidal taper,
respectively. Each curve reaches a peak which
is marked by [J At these peak points, the
columns corresponding to the given taper
types show the largest b values, which are
the buckling

columns, Here the word “strongest” is used to

load parameters of strongest

mean “most” resistant to buckle. It is found
that all strongest columns occur at the same
value n regardless of side number m if the
And all b values of

taper type is same.

parabolic taper
O : strongest columns

0.0t T T
0 1 2 3 4 5
n

Fig. 7. b vs. n curves of parabolic taper by side
number m

6.0

sinusoidal taper
O : strongest columns

0.0 LI B B NS S R U I A Sl RS U B L LA B B

0 1 2 3 4 5
n

Fig. 8. b vs. n curves of sinusoidal taper by side

number m

strongest columns decrease, as the m value is
increased from 3 to c. The values of b and n
of all strongest columns are summarized in
Table 2. From this table, it is noted that all b
values of strongest columns are largest at
m=3(triangular cross-section} and smallest at
m=c(circular cross-section), and the ratios of

m=3 to m=c are same, ie. 1.210, regardless
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Table 2. Values of n and b of strongest columns by
taper type and side number m

Taper type m n b ratio*
3 | 100 | 4837 | 1210

Linear tapet 4 | 100 | 4180 | 1.047
5 | 100 | 4088 | 1017

c | 100 | 4000 | 1.000

3 | 0836 | 4929 | 1210

4 | 0836 | 4260 | 1.047

Parabolic taper | o | g eas | 4145 | 1.017
c | 083 | 4075 | 1.000

3 | 0855 | 4904 | 1210

_ 4 | 0855 | 4247 | 1047
Stnusoidal taper |\ o | g ecs | 4124 | 1.017
¢ | 0855 | 4056 | 1.000

*Ratio of b of m=3. 4 and 5. respectively, to m=c¢

6.0

| twriangular cross-section(m=3)
O : strongest columns

£ 3.0
2.0
] P : parabolic taper
5 : sinusoidal taper
1.0 L ; linear taper
[ e e e e IHLIC o o o oy o oy o o e B
0 1 2 3 4 3

n
Fig. 9. b vs. n curves by taper type

of taper types.

Shown in Fig. 9 are the b versus n curves
of parabolic, sinusoidal and linear tapers,
respectively, for m=3, in which the strongest
columns are marked by [ It is clear that the
strongest of all columns by taper type is the
parabolic tapered column as shown in this
figure and Table 2. The effect of taper type
on b is negligible when n is less than about 04.

0.4

P- parabolic taper(n=0 836)
S sinusoidal taper{n=0.335)

pern=1.00

V0.2
0.17
00T T T T T T
00 01 02 03 04 05 06 07 08
g
Fig. 10. Elastica of strongest columns with m=3 and

p=6

Shown in Fig. 10 are the elastica of stron-
gest columns of m=3 and p=6 by taper type.
It is clear that the horizontal and wvertical
deflections increase, as the taper tiype is
increased from parabolic to sinusoidal to linear
taper, other parameters remaining constant.

VI. Concluding Remarks

The numerical methods developed herein for
computing the elastica and buckling load of
tapered column of regular polygon cross-
and both
clamped ends were found to be efficient, and

section with constant volume
highly versatile. The differential equations
governing the elastica of such column were
derived and solved numerically. The linear,
parabolic and sinusoidal tapers were chosen for
the wvariable cross-sectional depth. As the
numerical resulfs, the equilibrium paths and
elastica were presented, and the buckling load
parameters versus section ratio (b vs. n) cur-
ves were also reported. The strongest columns
by taper type and side number of regular
polygon cross-section were determined by rea-
ding the peak point of buckling load para-
meters and their corresponding section ratios
on b versus n curves. The effect of laper

lype on buckling load parameters 1s negligible
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when section ratio i1s less than about 0.4.
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