• Title/Summary/Keyword: 타이어/노면

Search Result 88, Processing Time 0.023 seconds

Vibration Analysis of Automobile Tire Due to Road Impact (노면으로부터 충격을 받는 자동차 타이어의 진동해석)

  • 이태근;김병삼
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.505-511
    • /
    • 2003
  • As the technique of automobile industry is being advanced, the advancement of vehicle ride is being required. In order to achieve this purpose, the study on the vibration which are produced by moving vehicle is carried out actively. In order to analysis, the tire vibration characteristics for passing over a cleat, the tire is modeled with 7-DOFs (degree of freedom). The model is verified against simulations and experiments. The effects of proposed tire design parameters such as the tire tread rubber, tread ring, apex are considered. According to the results of analysis, the tire design parameters that can reduce the tire and wheel vibration quantity are conducted.

A Study of the Prediction of the Temperature Reduction of Tire Sidewalls According to the Shape of the Cooling Fins (냉각핀 형상에 따른 타이어 사이드월의 표면온도 저감 효과 예측에 관한 연구)

  • Park, Jae Hyen;Jung, Sung Pil;Chung, Won Sun;Chun, Chul Kyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.245-253
    • /
    • 2016
  • The friction and deformation of a tire causes heat generation, which causes a temperature rise of the tire. This temperature rise can be a source of tire damage. The object of this study is to investigate the cooling effect of the application of a fin to the tire side to suppress the temperature rise. Eight different fin shapes were considered, and the sidewall surface temperature reduction owing to the cooling fin shape was numerically analyzed. In addition, the flow characteristics and heat transfer characteristics of the vortex of the pin rear were compared.

AEBS Algorithm with Tire-Road Friction Coefficient Estimation (타이어-노면 마찰계수 추정을 이용한 AEBS 알고리즘)

  • Han, Seungjae;Lee, Taeyoung;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.17-23
    • /
    • 2013
  • This paper describes an algorithm for Advanced Emergency Braking(AEB) with tire-road friction coefficient estimation. The AEB is a system to avoid a collision or mitigate a collision impact by decelerating the car automatically when forward collision is imminent. Typical AEB system is operated by Time-to-collision(TTC), which considers only relative velocity and clearance from control vehicle to preceding vehicle. AEB operation by TTC has a limit that tire-road friction coefficient is not considered. In this paper, Tire-road friction coefficient is also considered to achieve more safe operation of AEB. Interacting Multiple Model method(IMM) is used for Tire-road friction coefficient estimation. The AEB algorithm consists of friction coefficient estimator and upper level controller and lower level controller. The numerical simulation has been conducted to demonstrate the control performance of the proposed AEB algorithm. The simulation study has been conducted with a closed-loop driver-controller-vehicle system using using MATLAB-Simulink software and CarSim Vehicle model.

Tire/road Noise Characteristics of General Asphalt Pavement (일반 아스팔트포장의 타이어/노면 소음 특성)

  • Yoo, In-Kyoon;Lee, Su-Hyung;Han, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.175-182
    • /
    • 2021
  • As road noise became an issue, low-noise pavement (LNP) has emerged. The noise difference from general asphalt pavement (GAP) is a measure to explain the noise reduction of LNP. On the other hand, even for GAP, noise varies with the performance years (PY) and pavement condition. This study evaluated the representative noise value (RNV) by the speed and PY of GAP. Sections of 49selected from the National Road Pavement Management System, and the noise was measured at speeds from 50km/h to 80km/h at every 10km/h using the Close Proximity Method (CPX). Because the noise immediately after construction differed from the other, it was treated separately, and some outliers were removed. The noise increased with increasing PY. In addition, the noise increase by speed showed a reliable trend at all noise levels. The RNV for each speed and PY was obtained through analyses of the PY and speed. The average noise difference between the initial construction and the six-year-paced pavement was approximately 6dB. When evaluating the noise reduction of LNP, it is necessary to use RNV rather than the noise of old pavement. The RNV of GAP is necessary for a relative comparison with LNP and studying the road noise characteristics for each GAP type.

Sliding Friction of Elastomer Composites in Contact with Rough Self-affine Surfaces: Theory and Application (자기-아핀 표면 특성을 고려한 유기탄성체 복합재료 마찰 이론 및 타이어 트레드/노면 마찰 응용)

  • Bumyong Yoon;Yoon Jin Chang;Baekhwan Kim;Jonghwan Suhr
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.141-153
    • /
    • 2023
  • This review paper presents an introduction of contact mechanics and rubber friction theory for sliding friction of elastomer composites in contact with rough surfaces. Particularly, Klüppel & Heinrich theory considers the self-affine (or fractal) characteristic for rough surfaces to predict adhesion and hysteresis frictions of elastomers based on the contact mechanics of Greenwood & Williamson. Due to dynamic excitation process of elastomer composites while sliding in contact with multiscale surface roughness (or asperity), viscoelastic properties in a wide frequency range becomes major contributor to friction behaviors. A brief description and examples are provided to construct a viscoelastic master curve considering nonlinear viscoelasticity of elastomer composites. Finally, application of rubber friction theory to tire tread compounds in traction with road surfaces is discussed with several experimental and theoretical results.

Study on the Noise Characteristics of Bridge Deck Pavements in Seoul Inner Ring Road (서울시 내부순환도로 교면포장 형식에 따른 소음특성 연구)

  • Lee, Sang-Yum;Jin, Jung-Hoon;Mun, Sung-Ho;Moon, Hak-Ryong
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.19-28
    • /
    • 2012
  • A measuring technique for tire-pavement interaction noise that uses a proposed noble close proximity(NCPX) method, which has been proofed in terms of the reliability and consistency of interaction noise measurement through several researches, equipped with surface microphones has been adopted in order to perform bridge deck pavement noise evaluations on four different pavement surfaces. Through field testing measurement of bridge deck pavement in Seoul inner ring road, the appropriate noise-measuring procedures have been used for evaluating the noise characteristics of four different surfaces. Measuring results show that tire-pavement noise levels vary depending on the surface types and vehicle speeds. Furthermore, the different characteristics of tire-pavement interaction noise can be found before and after the new surface construction of bridge deck pavements in terms of the 1/3 octave band analysis of vehicle speed.

A Study on Turning Characteristics of Vehicle Based on Parameters of Curved Road (매개변수에 따른 커브 길에서 차량 선회특성에 관한 연구)

  • Yang, Sung-Hoon;Lee, Hak-Yong;Yoon, Jun-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.25-32
    • /
    • 2013
  • Entry speed of the vehicle and lateral acceleration acting on the vehicle, roll-angle associated with the overthrow, and then the structure of the road, the friction of road surface are important factors in turning on the curved road. In this study, we analyzed the state change of the vehicle causing entry speed of the vehicle and superelevation of the road, the friction coefficient by using a PC-crash Program for traffic accident reconstruction. As a result, when vehicle is turning the curved road, we could ascertain that the structure of the road and state of the road surface are a major factor about the set up of limited speed.

On the Study of the Period Measurement of Ultrasonic Signal in Damaged Vehicle Tire (자동차 타이어 손상에 의한 초음파 신호 주기 측정에 관한 연구)

  • Park, Jung-Im;Lim, Seung-Gak;Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.47-52
    • /
    • 2011
  • We studied about the damaged tire decision algorithm that measured dominant period of ultrasonic signal due to a foreign material on the friction between tire and road surface. We computed the power spectrum about the envelope of ultrasonic signal acquired from the damaged tire, then proposed the dominant period decision algorithm by statistical power threshold value. As the result of simulation, when driving by the speed of 80km/h, the 100ms of dominant period that measured in the proposed algorithm is more accurate than the 97.6ms of power spectrum peak period referenced on the average period of ultrasonic signal envelope peak, 101.24ms.

ABS Sliding Mode Control considering Optimum Road Friction Force of Tyre (타이어의 최적 노면 마찰력을 고려한 ABS 슬라이딩 모드 제어)

  • Kim, Jungsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.78-85
    • /
    • 2013
  • This paper presents the sliding mode control methods for anti-lock brake system (ABS) with the friction force observer. Using a simplified quarter car model, the sliding mode controller for ABS is designed to track the desired wheel slip ratio. Here, new method to find the desired wheel slip ratio which produces the maximum friction force between road and tire is suggested. The desired wheel slip ratio is varying according road and tire conditions to produce maximum friction force. In order to find optimum desired wheel slip ratio, the sliding mode observer for friction force is used. The proposed sliding mode controller with observer is evaluated in simulation, and the control design is shown to have high performance on roads with constant and varying adhesion coefficients.