• Title/Summary/Keyword: 클럭 합성

Search Result 79, Processing Time 0.027 seconds

Implementation of Digital CODEC for RFID Dual-band Reader system (RFID Dual-band 리더 시스템의 디지털 코덱 설계)

  • Sim, Jae-Hee;Lee, Yong-Joo;Lee, Yong-Surk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.1015-1022
    • /
    • 2007
  • In this paper, dual-band digital codec for UHF(Ultra High Frequency) and MW(Micro Wave) is proposed for an RFID reader system. Most RFID systems have been supported only one protocol. But, There are many protocols of each bandwidth. Especially, UHF bandwidth which is widely used on the globe consists of A,B,C type, and more standards will be established. Recently, Since an interest about mobile RFID system is increasing, the RFID system with more than one protocol will be need. Therefore, this paper suggests a dual-band digital codec with UHF and MW bands for an RFID reader system. Standards used in this system are 18000-6C and 18000-4 standards. The digital codec is synthesize by the Quartus II compiler. Target device is EPC20Q240C8 which is family of CycloneII. Main Clock is 19.2MHz and elements of FPGA which is used for the system is 18,752.

Design of Low-Power and Low-Complexity MIMO-OFDM Baseband Processor for High Speed WLAN Systems (고속 무선 LAN 시스템을 위한 저전력/저면적 MIMO-OFDM 기저대역 프로세서 설계)

  • Im, Jun-Ha;Cho, Mi-Suk;Jung, Yun-Ho;Kim, Jae-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.940-948
    • /
    • 2008
  • This paper presents a low-power, low-complexity design and implementation results of a high speed multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) wireless LAN (WLAN) baseband processor. The proposed processor is composed of the physical layer convergence procedure (PLCP) processor and physical medium dependent (PMD) processor, which have been optimized to have low-power and reduced-complexity architecture. It was designed in a hardware description language (HDL) and synthesized to gate-level circuits using 0.18um CMOS standard cell library. As a result, the proposed TX-PLCP processor reduced the power consumption by as much as 81% over the bit-level operation architecture. Also, the proposed MIMO symbol detector reduced the hardware complexity by 18% over the conventional SQRD-based architecture with division circuits and square root operations.

Design and Performance Analysis of the Digital Phase-Locked Loop For Frequency Hopping Spread Spectrum system (주파수도약 대역확산시스템을 위한 디지털 위상고정루프의 설계 및 성능분석)

  • Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1103-1108
    • /
    • 2010
  • In this paper, Frequency Synthesizer which is widely used for FH-SS system is proposed and the experimental results are analyzed. The performance of the DPLL(Digital Phase-Locked-Loop), which is the main part of the Synthesizer is analyzed by the computer program. Using Maxplus-II tool provided by altera. co., ltd, each part of the DPLL is designed and all of them is integrated into EPM7064SLC44-10 chip. And the simulation results are compared with the characteristics of the implemented circuits for analysis. And the experiential results show that the N value of the loop filter is toggled to adjacent N value, which result in phase jitter of the output. It can be resolved by increasing DCO(Digital Controlled oscillator) clock rate.

Design of Bit Selectable and Bi-directional Interface Device using Interrupt Generator (인터럽트 발생기를 사용한 접속 비트 전환식 양방향 접속장치의 설계)

  • Lim, Tae-Young;Yi, Cheon-Hee
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.7
    • /
    • pp.17-26
    • /
    • 1999
  • In this paper, Bit selectable and Bi-directional Interface Device is described, which can communicate data with the peripheral devices. Specially, an algorithm of truth-table comparison that synthesizes the pulse-type sequential circuit pulse has been proposed to design the Interrupt Generator, and implemented in designing the Interrupt Register. Also, a description of the asynchronous design method is given to remove the clock skew phenomenon, and the output asynchronous control method which finds the optimal clock and controls all the enable signal of the output pins at the same time is presented. Using this technique interface ports have delay time of less-than 0.7ns.

  • PDF

Implementation of a Branch Predictor and Its Cost Per Performance Analysis for a High Performance Embedded Microprocessor (고성능 내장형 마이크로프로세서의 분기 예측기 구현 및 성능 대비 비용 분석)

  • Shin, Sang-Hoon;Choi, Lynn
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.202-204
    • /
    • 2003
  • EISC ISA를 기반으로 한 64 비트 고성능 내장형 마이크로프로세서 AE64000의 효과적인 성능 향상을 위해서 비용 대비 성능 향상이 우수한 분기 예측 기법을 도입하여 AE64000 파이프라인에 적합한 분기 예측기를 추가로 설계하고 SPEClnt 벤치마크 및 타 내장형 벤치마크의 성능 분석 시뮬레이션을 통해 최적의 분기 예측기의 구조를 결정하였다. AE64000에서 LERI 명령 처리를 위해 AE64000 파이프라인에 추가된 독특한 IFU에 의하여 복잡성을 갖지만, IF 단계의 PC 대신에 IFU 단계의 PrePC를 이용하여 분기 명령을 명령어 prefetch 단계에서 예측함으로써, 올바른 분기 예측시 분기로 인한 손실을 제거할 수 있다. 결과적으로 최종 선정된 최적의 분기 예측기는 Verilog로 구현하여 AE64000 프로세서 코어 모델과 통합 합성하였고 아울러 추가되는 면적과 최종 목표 클럭에 동작하기 위한 타이밍 분석을 통해 최종 생산에 적합하도록 설계된 분기 예측기의 기능 및 타이밍 검증을 수행하였다. 최종 구현된 분기 예측기는 프로세서 칩 전체의 1% 미만의 비용으로 최고 12%의 성능 향상을 달성하여 성능 대비 면적의 효율성에서 높은 결과를 보였다.

  • PDF

An Adaptive Frequency Hopping Method in the Bluetooth Baseband (블루투스 베이스밴드에서의 적응 주파수 호핑 방식)

  • Moon Sangook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.237-241
    • /
    • 2005
  • In Bluetooth version 1.0, the frequency hopping algorithm was such that there was one piconet, using a specific frequency, resolving the frequency depending on the part of the digits of the device clock and the Bluetooth address. Basic pattern was a kind of a round-robin using 79 frequencies in the ISM band. At this point, a problem occurs if there were more than two devices using the same frequency within specific range. In this paper, we proposed a software-based adaptive frequency hopping method so that more than two wireless devices can stay connected without frequency crash. Suggested method was implemented with HDL(Hardware Description Language) and automatically synthesized and laid out. Implemented adaptive frequency hopping circuit operated well in 24MHz correctly.

Design of the Transceiver for a Wide-Range FMCW Radar Altimeter Based on an Optical Delay Line (광 지연선 기반의 넓은 고도 범위를 갖는 고정밀 FMCW 전파고도계 송수신기 설계)

  • Choi, Jae-Hyun;Jang, Jong-Hun;Roh, Jin-Eep
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1190-1196
    • /
    • 2014
  • This paper presents the design of a Frequency Modulated Continuous Wave(FMCW) radar altimeter with wide altitude range and low measurement errors. Wide altitude range is achieved by employing the optic delay in the transmitting path to reduce the dynamic range of measuring altitude. Transmitting power and receiver gain are also controlled to have the dynamic range of the received power be reduced. In addition, low measurement errors are obtained by improving the sweep linearity using the Direct Digital Synthesizer(DDS) and minimizing the phase noise employing the reference clock(Ref_CLK) as the offset frequency of the Phase Locked Loop(PLL).

A Memory-efficient Partially Parallel LDPC Decoder for CMMB Standard (메모리 사용을 최적화한 부분 병렬화 구조의 CMMB 표준 지원 LDPC 복호기 설계)

  • Park, Joo-Yul;Lee, So-Jin;Chung, Ki-Seok;Cho, Seong-Min;Ha, Jin-Seok;Song, Yong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.1
    • /
    • pp.22-30
    • /
    • 2011
  • In this paper, we propose a memory efficient multi-rate Low Density Parity Check (LDPC) decoder for China Mobile Multimedia Broadcasting (CMMB). We find the best trade-off between the performance and the circuit area by designing a partially parallel decoder which is capable of passing multiple messages in parallel. By designing an efficient address generation unit (AGU) with an index matrix, we could reduce both the amount of memory requirement and the complexity of computation. The proposed regular LDPC decoder was designed in Verilog HDL and was synthesized by Synopsys' Design Compiler using Chartered $0.18{\mu}m$ CMOS cell library. The synthesized design has the gate size of 455K (in NAND2). For the two code rates supported by CMMB, the rate-1/2 decoder has a throughput of 14.32 Mbps, and the rate-3/4 decoder has a throughput of 26.97 Mbps. Compared with a conventional LDPC for CMMB, our proposed design requires only 0.39% of the memory.

Implementation of the AMBA AXI4 Bus interface for effective data transaction and optimized hardware design (효율적인 데이터 전송과 하드웨어 최적화를 위한 AMBA AXI4 BUS Interface 구현)

  • Kim, Hyeon-Wook;Kim, Geun-Jun;Jo, Gi-Ppeum;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.2
    • /
    • pp.70-75
    • /
    • 2014
  • Recently, the demand for high-integrated, low-powered, and high-powered SoC design has been increasing due to the multi-functionality and the miniaturization of digital devices and the high capacity of service informations. With the rapid evolution of the system, the required hardware performances have become diversified, the FPGA system has been increasingly adopted for the rapid verification, and SoC system using the FPGA and the ARM core for control has been growingly chosen. While the AXI bus is used in these kinds of systems in various ways, it is traditionally designed with AXI slave structure. In slave structure, there are problems with the CPU resources because CPU is continually involved in the data transfer and can't be used in other jobs, and with the decreased transmission efficiency because the time not used of AXI bus beomes longer. In this paper, an efficient AXI master interface is proposed to solve this problem. The simulation results show that the proposed system achieves reductions in the consumption clock by an average of 51.99% and in the slice by 31% and that the maximum operating frequency is increased to 107.84MHz by about 140%.

Implementation of High-radix Modular Exponentiator for RSA using CRT (CRT를 이용한 하이래딕스 RSA 모듈로 멱승 처리기의 구현)

  • 이석용;김성두;정용진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.10 no.4
    • /
    • pp.81-93
    • /
    • 2000
  • In a methodological approach to improve the processing performance of modulo exponentiation which is the primary arithmetic in RSA crypto algorithm, we present a new RSA hardware architecture based on high-radix modulo multiplication and CRT(Chinese Remainder Theorem). By implementing the modulo multiplier using radix-16 arithmetic, we reduced the number of PE(Processing Element)s by quarter comparing to the binary arithmetic scheme. This leads to having the number of clock cycles and the delay of pipelining flip-flops be reduced by quarter respectively. Because the receiver knows p and q, factors of N, it is possible to apply the CRT to the decryption process. To use CRT, we made two s/2-bit multipliers operating in parallel at decryption, which accomplished 4 times faster performance than when not using the CRT. In encryption phase, the two s/2-bit multipliers can be connected to make a s-bit linear multiplier for the s-bit arithmetic operation. We limited the encryption exponent size up to 17-bit to maintain high speed, We implemented a linear array modulo multiplier by projecting horizontally the DG of Montgomery algorithm. The H/W proposed here performs encryption with 15Mbps bit-rate and decryption with 1.22Mbps, when estimated with reference to Samsung 0.5um CMOS Standard Cell Library, which is the fastest among the publications at present.