Browse > Article
http://dx.doi.org/10.5515/KJKIEES.2014.25.11.1190

Design of the Transceiver for a Wide-Range FMCW Radar Altimeter Based on an Optical Delay Line  

Choi, Jae-Hyun (Agency for Defense Development)
Jang, Jong-Hun (Agency for Defense Development)
Roh, Jin-Eep (Agency for Defense Development)
Publication Information
Abstract
This paper presents the design of a Frequency Modulated Continuous Wave(FMCW) radar altimeter with wide altitude range and low measurement errors. Wide altitude range is achieved by employing the optic delay in the transmitting path to reduce the dynamic range of measuring altitude. Transmitting power and receiver gain are also controlled to have the dynamic range of the received power be reduced. In addition, low measurement errors are obtained by improving the sweep linearity using the Direct Digital Synthesizer(DDS) and minimizing the phase noise employing the reference clock(Ref_CLK) as the offset frequency of the Phase Locked Loop(PLL).
Keywords
FMCW; Radar; Altimeter; Wide-Range; Phase Noise;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Cailliu, V. Zlotnicki, "Precipitation detection by the TOPEX/Poseidon dual frequency radar altimeter, TOPEX microwave radiometer, special sensor microwave/imager and climatological shipboard reports", IEEE Trans. Geosci. Remote Sens., vol. 38, no. 1, pp. 205-213, Jan. 2000.   DOI
2 G. D. Quartly, "Optimizing ${\sigma}_0$ information from the Jason-2 altimeter", IEEE Geosci. Remote Sens. Lett., vol. 6, no. 3, pp. 398-402, Jul. 2009.   DOI   ScienceOn
3 H. E. Bingol, B. Akin, and O. KOC, "Radar altimeter as a navigation aid using hierarchical elevation map clustering", in Proc. IEEE Position Location and Navigation Symp., pp. 377-381, 2012.
4 P. A. M. Berry, R. G. Smith, M. K. Salloway, and J. Benveniste, "Global analysis of EnviSat burst echoes over inland water", IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1980-1984, May 2012.   DOI   ScienceOn
5 G. Alberti, L. Festa, C. Papa, and G. Vingione, "A waveform model for near-nadir radar altimetry applied to the Cassini mission to Titan", IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2252-2261, Jul. 2009.   DOI   ScienceOn
6 N. Galin, A. Worby, T. Markus, C. Lueschen, and P. Gogineni, "Validation of airborne FMCW radar measurements of snow thickness over sea ice in Antarctica", IEEE Trans. Geosci. Remote Sens., vol. 50, no. 1, pp. 3-12, Jan. 2012.   DOI
7 J. L. Campbell, M. U. de. Haag, "Assessment of radar altimeter performance when used for integrity monitoring in a synthetic vision system", in Proc. 20th Digital Avionics Systems, vol. 1, Oct. 2001.
8 J. W. Joyce, "Radar Altimeter", U. S patent 6,992,614, Jan. 2006.
9 H. D. Griffiths, "New ideas in FM radar", Electron. Commun. Eng. J., vol. 2, no. 5, pp. 185-194, Oct. 1990.   DOI
10 P. D. L. Beasley, "The influence of transmitter phase noise on FMCW radar performance", European Microw. Conf. Proc., pp. 331-334, Sep. 2006.
11 K. Lin, Y. E. Wang, C. K. Pao, and Y. C. Shih, "A Ka-band FMCW radar front-end with adaptive leakage cancellation", IEEE Trans. Microw. Therory and Tech., vol. 54, no. 12, pp. 4041-4048, Dec. 2006.   DOI
12 J. H. Choi, M. S. Kim, S. H. Shin, and Y. G. Yang, "Low phase noise S-band PLL frequency synthesizer using DDS and offset mixing techniques", Asia-Pacific Microw. Conf. Proc., pp. 1409-1412, Dec. 2009.
13 X. Gai, G. Liu, S. Chartier, A. Trasser, and H. Schumacher, "A PLL with ultra low phase noise for millimeter wave applications", European Microw. Conf. Proc. pp. 69-72, Sep. 2010.