• Title/Summary/Keyword: 크레인 설계

Search Result 206, Processing Time 0.021 seconds

A Study on Structural Design of Conveyor Frame for High Efficiency Gantry Crane (고효율 갠트리 크레인용 컨베이어 프레임의 구조설계에 관한 연구)

  • Lee S. W.;Shim J. J.;Han D. S.;Park J. S.;Han G. J.;Lee K. S.;Kim T. H.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.317-322
    • /
    • 2004
  • In this study the structural design of conveyor frame was carried out for the high efficiency gantry crane which can improve the productivity of the container transportation job by reducing cycle time. When the gantry crane was operated, the conveyor frame was deflected largely by its deadload and the total weight of containers placed on it. Therefore thicknesses of conveyor frame to minimize its deadload were designed by the size optimization using ANSYS program as the bending stress and the deflection of frame due to this simulation satisfied their required values.

  • PDF

A Study on the Reduction of Over Head Crane′s Weight Considering Buckling, Vibration and Strength (좌굴, 진동, 강도를 고려한 천장크레인의 경량화에 관한 연구)

  • Hong, Do-Kwan;Ahn, Chan-Woo
    • Journal of Navigation and Port Research
    • /
    • v.26 no.3
    • /
    • pp.317-322
    • /
    • 2002
  • In this study, structural optimum design was applied to the girder of magnet over head crane. The optimization was carried out using ANSYS Code for the deadweight of girder, especially focused on the thickness of its upper, lower, side and reinforced plates. The weight could be reduced up to around 15% with constraints of its deformation, stress, natural frequency and buckling strength. The structural safety was also verified by the buckling analysis of its panel structure. It might be thought to be very useful to design the conventional structures for the weight save through the structural optimization. Also this paper grasped the sensitivity influenced the design variables upon the objective function and the state variables.

Design Methodology of Yard Layout in Port Container Terminal (컨테이너터미널의 장치장 레이아웃 설계방법)

  • Choi Yong-Seok;Ha Tae-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.183-188
    • /
    • 2004
  • This paper presents a method for designing layout on the yard and evaluating alternative designs of the layout by applying simulation. The design method is based on the concepts of the conventional port container terminal with yard layout, In general, yard design of the container terminal is consists of the two major parts. One is to divide yard area between the number of sections and the number of runs and the other is to decide the number of equipment that is the yard truck and yard crane. In the past days, this design was depended on the experience of the terminal operator and the reproduction of the conventional terminal layout because it is a very complex decision problem. In this paper, we suggest the method of yard design as a conceptual procedure and estimate the efficiency of the container crane and the optimal number of equipment using simulation. In the experiment results, the number of sections and runs on yard area, the number of yard truck per container crane and the number of yard crane per run are decided. In addition, the traffic flow among blocks on yard layout is estimated in terms of rate.

  • PDF

A Design Method of Yard Layout in Port Container Terminal (컨테이너터미널의 장치장 레이아웃 설계방법)

  • Choi Yong-Seok;Ha Tae-Young
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.741-746
    • /
    • 2005
  • This paper proposes a method for designing layout on the yard and evaluating alternative designs of the layout by applying simulation The design method is based on the concepts of the conventional port container terminal with yard layout. In general, yard design of the container terminal consists of the two major parts. One is to divide yard area between the number of sections and runs and the other is to decide the number of equipment including yard truck and yard crane. In the past days, this design was depended on the experience of the terminal operator and the reproduction of the conventional terminal layout because it is a very complex problem to be considering facilities and equipments. In this paper, we suggest a design method as a conceptual procedure used simulation method The number of sections and runs on yard area, the number of yard truck per container crane, and the number of yard crane per run are decided using simulation In addition, the traffic flow among blocks on yard layout is estimated in terms of rate.

A Fluid Analysis of a Container Crane using the Computation Fluid Dynamics (전산유동해석을 이용한 컨테이너 크레인의 유동 분석)

  • Kwon Soon-Kyu;Lee Seong-Wook;Han Dong-Seop;Han Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.349-354
    • /
    • 2006
  • This study analyzed the fluid state around a container crone according to a wind direction when a wind load was applied to a container crone. The container crane for this research is a model of a 50-ton class used broadly in the current ports. The dimension of an external fluid field set up diameter, 300m, height, 200m. This study considered the change of a wind velocity according to an altitude in a criterion of a wind velocity, 50m/s, applying a power series law. An incident angle applied to an interval of 30 degrees in $0^{\circ}{\sim}180^{\circ}$ and this study carried out a computation fluid dynamics using a CFX-10. In this study, we indicate the wind pressure according to the height and section figure of each member. In addition, we suggest the wind pressure accordint to a wind direction. And we will analyze the structure stability of a container crone from the fluid-ductile analysis in the next study.

  • PDF

A Study on the Effect of Wind Load to an Articulated type Container Crane by Fluid-Structural Coupled Field Analysis (유동-구조 연성해석기법을 이용한 풍하중이 관절형 컨테이너 크레인에 미치는 영향에 관한 연구)

  • An, Tae-Won;Lee, Seong-Wook;Han, Dong-Seop;Kim, Tae-Hyung;Han, Geun-Jo
    • Journal of Navigation and Port Research
    • /
    • v.32 no.1
    • /
    • pp.23-27
    • /
    • 2008
  • This study was carried out to the effect of wind load on the structural stability of an articulated type container crane according to the wind direction assuming that 75m/s wind velocity is applied on a container crane using FSI(fluid-structural interaction). To consider fluid phenomenon around the container crane, the wind load was derived by the computation fluid dynamic, and it applied to the FSI which can guarantee an accuracy and a reliability in the design stage for wind resistant structural stability to minimize the damage due to high wind load applied in a container crane with a 'ㄱ' type articulated boom which used in the total height restriction region. Following from this, the reaction force on the each support of a container crane was suggested. ANSYS ICEM CFD 10.0 and ANSYS CFX 10.0 used for computation fluid dynamic, and the ANSYS Workbench 11.0 was used for the fluid-structural interaction.

A Study on Structural Design of Conveyor Frame for High Efficiency Gantry Crane (고효율 갠트리 크레인용 컨베이어 프레임의 구조설계에 관한 연구)

  • Lee S.W;Shim J.J;Han D.S;Park J.S;Han G.J;Lee K.S;Kim T.H
    • Journal of Navigation and Port Research
    • /
    • v.28 no.10 s.96
    • /
    • pp.941-946
    • /
    • 2004
  • In this study the structural design of conveyor frame was carried out for the high efficiency gantry crane which can improve the productivity of the container transportation work by reducing cycle time. When the gantry crane was operated, the conveyor frame was deflected largely by its deadload and the total weight of containers placed on it. Therefore thicknesses of conveyor frame to minimize its deadload were designed by the size optimization using ANSYS program as the bending stress and the deflection cf frame due to this simulation satisfied their required values.

Stabilization Controller Design of a Container Crane for High Productivity in Cargo Handling Using a RCGA (실수코딩유전알고리즘을 이용한 하역생산성 향상용 컨테이너 크레인의 안정화 제어기 설계)

  • Lee, Soo-Young;Ahn, Jong-Kap;Choi, Jae-Jun;Son, Jeong-Ki;Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.515-521
    • /
    • 2007
  • To increase the stevedore efficiency and service level at container terminal, it is essential to reduce working time of container crane which has a bottle neck in the logistic flow of container. The working speed and safety are required to be improved by controlling the movement of the trolley as quick as possible without big overshoot and any residual swing motion of container in the vicinity of target position. This paper presents optimal state feedback control using RCGAs in the case of existing constrained conditions

Development of Design Support System to Optimize the Temporary Work (강교량 설치 가설공사의 최적화설계 지원시스템 개발)

  • Cho, Hun-Hee;Park, Jae-Woo;Cho, Moon-Young;Kim, Jung-Yeol
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.6 s.28
    • /
    • pp.115-123
    • /
    • 2005
  • Design of steel $bridge^{\circ}AEs$ temporary works has conducted relying on the experiences of engineers based on the previous similar projects. Consequently, there have been arguments against over-design of temporary bents to be required at the actual construction sites, and unnecessary design changes have been issued at the construction stage. In this study, we have developed an optimum design support system for temporary works of the steel bridge construction through establishing the database for the materials to be needed for implementation of temporary works. We've also improved the accuracy and efficiency of the works through the design optimization for temporary works, and contributed to reduce design changes as well as to utilize the design informations at the construction stage.

Adaptive Sliding Mode Control Design for Mismatched Uncertain Systems (비정합 불확실성을 갖는 시스템을 위한 적응 슬라이딩 모드 제어기 설계)

  • Choi, Han-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.39-43
    • /
    • 2010
  • This paper presents an LMI-based method to design an adaptive sliding mode controller for a class of uncertain systems. In terms of LMIs an existence condition of a sliding surface is derived. And an adaptive switching feedback control law to guarantee the asymptotic stability as well as to estimate the norm bound of disturbances is proposed. Finally, a numerical design example for controlling a overhead crane model is given to show the effectiveness of the proposed method.