• Title/Summary/Keyword: 콜드조인트

Search Result 19, Processing Time 0.029 seconds

Evaluation of Chloride Diffusion Coefficients in Cold Joint Concrete Considering Tensile and Compressive Regions (인장 및 압축영역에서 콜드조인트 콘크리트의 염화물 확산계수 평가)

  • Mun, Jin-Man;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.481-488
    • /
    • 2016
  • Concrete member has been subjected to dead and live loads in use, and the induced stress can affect not only structural but also durability behavior. In mass concrete construction, construction joint are required, however cold joint usually occur due to poor surface treatment and delayed concrete placing. The concrete with joint is vulnerable to both shear stress and chloride ingress. This paper presents a quantitative evaluation of cold joint and loading conditions on chloride diffusion behavior. With increasing tensile stress from 30% to 60%, chloride diffusion coefficient gradually increases, which shows no significant difference from result in the sound concrete. However chloride diffusion coefficient under 30% level of compressive stress significantly increases by 1.70 times compared with normal condition. Special attention should be paid for the enlarged diffusion behavior cold joint concrete under compressive stress.

Permeability Evaluation of OPC and GGBFS Concrete with Cold Joint (콜드조인트를 가진 OPC 및 GGBFS 콘크리트의 투수성 평가)

  • Choi, Se-Jin;Kim, Seong-Jun;Moon, Jin-Man;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.435-441
    • /
    • 2015
  • Concrete, as a porous media, has permeability and it is considered as a major parameter for durability evaluation. Cold joint caused by delayed placing of concrete accelerates water permeation and intrusion of harmful ions. In the paper, concrete specimens containing GGBFS (Ground Granulated Blast Furnace Slag) and OPC (Ordinary Portland Cement) are prepared with cold joint section, and water permeability and water flow at the age of 91 days are measured for 2 weeks. Sound concrete with GGBFS shows decreased permeability to 89% for sound concrete with OPC and 0.86 of decreasing ratio is evaluated in GGBFS concrete with cold joint. Through WPT (Water Penetration Test), the effects of mineral admixture and cold joint on water permeability are evaluated, and variation in water behavior via cold joint is analyzed through probabilistic method as well.

Chloride Diffusion Coefficient Evaluation in 1 Year-Cured OPC Concrete under Loading Conditions and Cold Joint (하중조건과 콜드조인트를 고려한 1년 양생된 OPC 콘크리트의 염화물 확산계수 평가)

  • Oh, Kyeong-Seok;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.21-29
    • /
    • 2017
  • Cold joint caused by construction delay is vulnerable to shear stress and it allows more rapid chloride penetration and diffusion. In the paper, investigation of chloride diffusion coefficient is performed for 1-year cured concrete considering compressive and tensile loading level and cold joint. The results are compared with the previous results in 91-day cured concrete. In the 1-year cured concrete without loading, 10.7% and 10.5% of diffusion reduction are evaluated for those in 91-day cured concrete, respectively. The reduction ratios are almost similar however the result in cold joint concrete shows much higher values. The results in 1-year cured concrete under 30% and 60% of compressive loading show reduction of chloride diffusion by 10.9% and 5.8% compared with 91-day cured results, which is caused by steady hydration of cement particles, so called, time effect. In the case of tensile loading, the differences in results are not significant regardless of time effect and cold joint since micro cracks which is weak point of concrete is much dominant despite of long term curing.

Changes in Service life in RC Containing OPC and GGBFS Considering Effects of Loadings and Cold Joint (OPC 및 GGBFS를 혼입한 콘크리트의 하중조건과 콜드조인트에 따른 내구수명 변화)

  • Kim, Hyeok-Jung;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.466-473
    • /
    • 2017
  • RC (Reinforced Concrete) member has varying service life due to varying diffusion characteristics with loading conditions even if it is exposed to constant exterior conditions. In the paper, quantitative parameters are obtained through adopting the previous results for effects of compressive, tensile, and cold joint on chloride diffusion in OPC (Ordinary Portland Cement) and GGBFS (Ground Granulated Blast Furnace Slag) concrete. Service life is evaluated in RC simple beam with 10.0m of span through increasing loading from self weight (2.5kN/m) to the loading to cracking moment (5.5kN/m). In OPC concrete without cold joint, service life changes to 89.4% for tensile region and 101% for compressive region with loadings while GGBFS concrete has 80.0% and 106%, respectively. For cold joint area, GGBFS concrete shows much reduced service life to 82~80% in compressive region and 69~61% in tensile region, which is caused by the lower diffusion in normal condition but relatively higher increasing cold joint effect than OPC concrete.

Chloride Diffusion Coefficients in Cold Joint Concrete with GGBFS (고로슬래그 미분말을 혼입한 콜드조인트 콘크리트의 염화물 확산계수)

  • Oh, Kyeong-Seok;Mun, Jin-Man;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.44-49
    • /
    • 2016
  • Among the deteriorating agents, chloride ion is reported to be one of the most harmful ions due to its rapid diffusion and direct effect on steel corrosion. Cold joint which occurs in mass concrete placing is vulnerable to shear resistance and more severe deterioration. The paper presents an quantitative evaluation of chloride diffusion coefficient in OPC(Ordinary Portland Cement) and GGBFS(Ground Granulated Blast Furnace Slag) concrete containing cold joint. GGBFS concrete shows $6.6{\times}10^{-12}m^2/sec$ which is almost 30% level of OPC concrete results and the trend is repeated in the case of cold joint concrete. Compared with OPC concrete, GGBFS concrete is evaluated to have better resistance to chloride penetration, showing 0.30 times of chloride diffusion coefficient in concrete without cold joint 0.39 times with cold joint, respectively.

Carbonation Behavior of GGBFS-based Concrete with Cold Joint Considering Curing Period (재령 변화에 따른 콜드조인트를 가진 GGBFS 콘크리트의 탄산화 거동)

  • Cho, Sung-Jun;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.259-266
    • /
    • 2018
  • In the work, the carbonation behavior and strength characteristics in cold-joint concrete are evaluated for OPC(Ordinary Portland Cement) and GGBFS(Ground Granulated Blast Furnace Slag)concrete considering three levels of curing age (28, 91 and 365 days). The compressive strength in GGBFS concrete is level of 86% of OPC concrete at the 91 days of curing period, but is level of 107% at 365 curing days due to hydration reaction. Carbonation velocities in both OPC and GGBFS concrete significantly decease after 91 curing days. The effect of cold joint on carbonation is evaluated to be small in GGBFS concrete. The increasing ratios of carbonation velocity in cold joint are 1.06 and 1.33 for 28-day and 365-day curing condition, respectively. However they decreases to 1.08 and 1.04 for GGBFS concrete for the same curing conditions.

Estimation of the Proper Placement Range of SRA Concrete for the Integration of Cold Joints (콜드조인트 일체화를 위한 초지연 콘크리트의 적정 타설 범위 도출)

  • Jeong, Jun-Taek;Kim, Soo-Ho;Jeong, Yeong-Jin;Hyun, Seung-Yong;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.259-260
    • /
    • 2023
  • This study attempted to derive an appropriate application range by reviewing the integration performance of joints according to the application range of SRA concrete. As a result, it was confirmed that the integration performance was improved even if SRA concrete was placed only by 75mm, which is 0.5 times the thickness of the member.

  • PDF

An Experimental Study on Bonding Performance Evaluation of UHPC in Accordance with Delay Time of Cold Joints (콜드조인트 지연시간에 따른 초고성능 콘크리트의 부착성능평가에 관한 실험적 연구)

  • Jang, Hyun-O;Kim, Bo-Seok;Jang, Jong-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.22-23
    • /
    • 2016
  • This study aims to derive the optimal condition that ensures the monolithicity of ultra-high performance concrete (UHPC), through the evaluation of bonding shear performance with respect to the time of cold joint occurrence during the placement. From the direct shear test, while the normalized bonding shear strength reduction of UHPC with the delay time of 15 minutes was the lowest at around 8%, a dramatic degradation of bonding shear performance was observed after 15 minutes. XRD analysis of the middle and surface sections was performed in order to analyze the composition of the thin film formed at the surface of UHPC, and as a result, the main ingredient appeared to be SiO2 from the XRD pattern of middle and surface sections, which is believed to be the result of the rising of SiO2-based filler, used as anadmixture in this study, toward the surface, due to its low specific gravity.

  • PDF

Permeability Evaluation in Cold Joint Concrete with Mineral Admixture under Compressive and Tensile Loading (혼화재료를 고려한 압축 및 인장상태에서 콜드조인트 콘크리트의 투수성 평가)

  • Choi, Se-Jin;Kim, Seong-Jun;Mun, Jin-Man;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.9
    • /
    • pp.576-587
    • /
    • 2015
  • This paper presents a quantitative evaluation of water permeability in concrete with cold joint considering mineral admixture and loading conditions. Concrete samples with OPC (Ordinary Portland Cement) and GGBFS(Ground Granulated Blast Furnace Slag) are prepared considering 0.6 of W/C ratio and 40% of replacement. 30% and 60% loading levels for compression and 60% loading level for tension are induced to concrete samples. In compression conditions, the permeability in control case shows $2.41{\times}10^{-11}m/s$ in OPC concrete, and it changes to $2.07{\times}10^{-11}m/s$ (30% of peak) and $2.36{\times}10^{-11}m/s$ (60% of peak). The results in GGBFS concrete shows the same trend, which yields $2.17{\times}10^{-11}m/s$ (control), $1.65{\times}10^{-11}m/s$ (30% of peak), and $1.96{\times}10^{-11}m/s$ (60% of peak), respectively. In tensile conditions, the permeability increases from $2.37{\times}10^{-11}m/s$ (control) to $2.67{\times}10^{-11}m/s$ (60% of peak) while that in GGBFS concrete increases from $2.17{\times}10^{-11}m/s$ (control) to $2.24{\times}10^{-11}m/s$ (60% of peak). Permeability coefficients decreases in 30% of compressive level but increases in 60% level, while results in tensile level increases rapidly. This shows pore structure in concrete is condensed and with loading and permeability increases due to micro-cracking. Permeability evaluation considering the effects of loading conditions, cold joint, and GGBFS is verified to be important since water permeability greatly changes due to their effects.