DOI QR코드

DOI QR Code

Carbonation Behavior of GGBFS-based Concrete with Cold Joint Considering Curing Period

재령 변화에 따른 콜드조인트를 가진 GGBFS 콘크리트의 탄산화 거동

  • Cho, Sung-Jun (Department of Civil and Environmental Engineering, Hannam University) ;
  • Yoon, Yong-Sik (Department of Civil and Environmental Engineering, Hannam University) ;
  • Kwon, Seung-Jun (Department of Civil and Environmental Engineering, Hannam University)
  • 조성준 (한남대학교 토목환경공학과) ;
  • 윤용식 (한남대학교 토목환경공학과) ;
  • 권성준 (한남대학교 토목환경공학과)
  • Received : 2018.09.28
  • Accepted : 2018.12.11
  • Published : 2018.12.30

Abstract

In the work, the carbonation behavior and strength characteristics in cold-joint concrete are evaluated for OPC(Ordinary Portland Cement) and GGBFS(Ground Granulated Blast Furnace Slag)concrete considering three levels of curing age (28, 91 and 365 days). The compressive strength in GGBFS concrete is level of 86% of OPC concrete at the 91 days of curing period, but is level of 107% at 365 curing days due to hydration reaction. Carbonation velocities in both OPC and GGBFS concrete significantly decease after 91 curing days. The effect of cold joint on carbonation is evaluated to be small in GGBFS concrete. The increasing ratios of carbonation velocity in cold joint are 1.06 and 1.33 for 28-day and 365-day curing condition, respectively. However they decreases to 1.08 and 1.04 for GGBFS concrete for the same curing conditions.

본 연구에서는 3가지 수준의 재령(28일, 91일, 365일)을 고려하고 OPC 콘크리트와 GGBFS 콘크리트를 대상으로 콜드조인트 콘크리트의 탄산화 거동 및 강도특성을 평가하였다. GGBFS 콘크리트의 압축강도는 91일에서 OPC 콘크리트의 86% 수준이었으나, 지속적인 수화반응으로 인해 재령 365일 재령에서는 107%로 높게 평가되었다. 탄산화 속도계수는 91일을 기점으로 OPC 및 GGBFS 콘크리트 모두 크게 감소하였으며 콜드조인트 효과는 OPC 콘크리트에서 크게 평가되지만 GGBFS 콘크리트에서는 비슷한 수준으로 평가되었다. 콜드조인트에서 OPC 콘크리트의 경우 28일에서는 1.06배, 365일에서는 1.33배 수준으로 탄산화 속도계수가 증가하였다. 그러나 GGBFS 콘크리트의 경우 28일에서는 1.08배, 재령 365일에서는 1.04배로 큰 차이가 발생하지 않았다.

Keywords

GSJHDK_2018_v6n4_259_f0001.png 이미지

Fig. 1. Representative of carbonation behavior(Ishida et al. 2003)

GSJHDK_2018_v6n4_259_f0002.png 이미지

Fig. 2. Performance in cold joint concrete with delayed concrete placing(JSCE. 2000)

GSJHDK_2018_v6n4_259_f0003.png 이미지

Fig. 3. Photos for making speciman of concrete

GSJHDK_2018_v6n4_259_f0004.png 이미지

Fig. 4. Photos of disk concrete

GSJHDK_2018_v6n4_259_f0005.png 이미지

Fig. 5. Photo of the carbonation test of concrete

GSJHDK_2018_v6n4_259_f0006.png 이미지

Fig. 6. Results of compressive strength

GSJHDK_2018_v6n4_259_f0007.png 이미지

Fig. 7. Carbonation velocity coefficient of OPC concrete

GSJHDK_2018_v6n4_259_f0008.png 이미지

Fig. 8. Comparative analysis of carbonation velocity coefficient

GSJHDK_2018_v6n4_259_f0009.png 이미지

Fig. 9. Carbonation velocity coefficient of GGBFS concrete

GSJHDK_2018_v6n4_259_f0010.png 이미지

Fig. 10. Comparative analysis of carbonation velocity coefficient

GSJHDK_2018_v6n4_259_f0011.png 이미지

Fig. 11. Comparative analysis between OPC and GGBFS concrete

GSJHDK_2018_v6n4_259_f0012.png 이미지

Fig. 12. Carbonation velocity coefficient considering cold joint and GGBFS

Table 1. Mixing design of OPC and GGBFS concrete

GSJHDK_2018_v6n4_259_t0001.png 이미지

Table 2. Chemical composition of OPC and GGBFS

GSJHDK_2018_v6n4_259_t0002.png 이미지

Table 3. Accelerated carbonation test conditions

GSJHDK_2018_v6n4_259_t0003.png 이미지

Table 4. Result of compressive strength

GSJHDK_2018_v6n4_259_t0004.png 이미지

Table 5. Result of depth of carbonation

GSJHDK_2018_v6n4_259_t0005.png 이미지

Table 6. Carbonation velocity coefficient of OPC concrete

GSJHDK_2018_v6n4_259_t0006.png 이미지

Table 7. Result of depth of carbonation

GSJHDK_2018_v6n4_259_t0007.png 이미지

Table 8. Carbonation velocity coefficient of GGBFS concrete

GSJHDK_2018_v6n4_259_t0008.png 이미지

References

  1. ACI 224.3R-95. (2001). Joints in Concrete Construction, American Concrete Institute, USA, Reapproved 2013.
  2. Choi, S.J., Kim, S.J., Mun, J.M., Kwon, S.J. (2015). Permeability evaluation in cold joint concrete with mineral admixture under compressive and tensile loading, International Journal of contents, 15(9), 576-587 [in Korean].
  3. Ishida, T., Maekawa, K. (2003). Modeling of durability performance of cementitious materials and structures based on thermo-hygro physics, RILEM Proceedings PRO 29: Life Prediction and Aging Management of Concrete Structures, 39-49.
  4. Izumi, I., Kita, D., Maeda, H. (1986). Carbonation, Kibodang Publication, 35-88.
  5. JSCE. (2000). Concrete Cold Joint Problems and Countermeasures, Concrete Library Japan 387 Society of Civil Engineering, 103 [in Japanese].
  6. Kim, G.Y., Choe, G.C., Nam, J.S., Choi, H.G. (2015). Durability design of concrete structure based on carbonation, Magazine of the Korea Concrete Institute, 27(5), 21-24 [in Korean]. https://doi.org/10.4334/JKCI.2015.27.1.021
  7. Kim, G.Y., Kyoung, S.S., Lim, C.H., Nam, J.S., Kim, M.H. (2010). Properties of engineering and durability concrete with fly-ash and blast furnace slag in normal strength level, Journal of the Korean Recycled Construction Resources Institute, 9, 103-110 [in Korean].
  8. Kim, G.Y., Yoon, M.H., Nam, J.S., Choi, H.G., Choi, H.S. (2018). Carbonation durability design technology of concrete, Magazine of the Korea Concrete Institute, 30(3), 53-58 [in Korean].
  9. Kim, H.J., Kwon, S.J. (2017). Changes in service life in RC containing OPC and GGBFS considering effects of loadings and cold joint, Journal of the Korean Recycled Construction Resources Institute, 5(4), 466-473 [in Korean]. https://doi.org/10.14190/JRCR.2017.5.4.466
  10. Kim, H.K., Kim, S.B. (2010). Service life prediction and carbonation of bridge structures according to environmental conditions, Journal of the Korea Institute for Structural Maintenance Inspection, 14(4), 126-132 [in Korean]. https://doi.org/10.11112/jksmi.2010.14.4.126
  11. Kim, K.K., Park, S.J., Kim, W.J., Cho, Y.K., Song, B.C., Jung, S.J. (2003). "A research on the carbonization status of aged concrete structures," Proceedings of the Korea Concrete Institute, 11, 70-73 [in Korean].
  12. Kim, S.S., Lee, J.B., Lee, J.H., Eom, S.H. (2013). "A study on carbonation resistance of NPP concrete utilizing ground granulated blast furnace slag," Proceedings of the Korea Concrete Institute, 97-98 [in Korean].
  13. Koh, K.T., Lee, J.S., Kim, D.G., Kim, S.W., Lee, J.H. (2005). "Investigation on the mechanism of concrete due to acid rain," Proceedings of the Korea Concrete Institute, 5, 209-212.
  14. KS F 2584. (2015). Standard Test Method for Accelerated Carbonation of Concrete, Korean Agency for Technology and Standards.
  15. Kwon, S.J., Park, S.S., Nam S.H., Cho, H.J. (2007). A study on survey of carbonation for sound, cracked, and joint concrete in RC column in metropolitan city, Journal of the Korea Institute for Structural Maintenance Inspection, 11(3), 116-122 [in Korean].
  16. Kwon, S.J., Song, H.W. (2010). Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling, Cement and Concrete Research, 40(1), 119-127. https://doi.org/10.1016/j.cemconres.2009.08.022
  17. Kwon, Y.S., Kim, H.R., Kim, N.H., Lee, S.B., Yoon, S.C., Jee, N.Y. (1998). A study on the carbonation coefficient of concrete in the long-term aged building, Journal of Architectural Institute of Korea Structure and Construction, 14(11), 79-86 [in Korean].
  18. Lee, J., Lee, B.C., Cho, Y.K., Park, K.M., Jung, S.H. (2017). Carbonation properties of recycled aggregate concrete by specified concrete strength, Journal of the Korean Recycled Construction Resources Institute, 5(1), 85-93. https://doi.org/10.14190/JRCR.2017.5.1.085
  19. Maekawa, K., Ishida, T., Kishi, T. (2003). Multi-scale modeling of concrete performance, Journal of Advanced Concrete Technology, 1(2), 91-126. https://doi.org/10.3151/jact.1.91
  20. Maekawa, K., Ishida, T., Kishi, T. (2009). Multi-scale modeling of structural concrete, Taylor&Francis, 86-105.
  21. Mun, J.M., Kwon, S.J. (2016). Evaluation of chloride diffusion coefficients in cold joint concrete considering tensile and compressive regions, Journal of the Korea Concrete Institute, 28(4), 481-488 [in Korean]. https://doi.org/10.4334/JKCI.2016.28.4.481
  22. Nagesh, M., Bishwajit, B. (1998). Modelling of chloride diffusion in concrete and determination of diffusion coefficients, Journal of ACI Materials, 95(2), 113-120.
  23. Oh, K.S., Kwon, S.J. (2017). Chloride diffusion coefficient evaluation in 1 year-cured OPC concrete under loading conditions and cold joint, Journal of the Korea Institute for Structural Maintenance Inspection, 20(5), 21-29 [in Korean].
  24. Papadakis, V.G., Vagenas, C.G., Fardis, M.N. (1991a). Physical and chemical characteristics affecting the durability of concrete, ACI Materials Journal, 88(2), 186-196.
  25. Papadakis, V.G., Vayenas, C.G., Fardis, M.N. (1991b). Fundamental modeling and experimental investigation of concrete carbonation, Journal of ACI Materials, 88(4), 363-373.
  26. Park, D.C., Kim, J.J., Cho, B.S., Park, J.H., Jeon, B.M., Oh, S.G. (2008). "Concrete carbonation considering the protective performance of concrete coating," Proceedings of the Korea Concrete Institute, 5, 501-504.
  27. Park, D.C., Song, H.C. (2009). "A study on the change of concrete carbonation depth considering the environmental effect of the carbon dioxide increase," Proceeding of Annual Conference of the Architectural Institute of Korea, 25(9), 125-132.
  28. Park, M.S. (2001). Study on Control of Carbonation at Cold Joint of Reinforced Concrete Structures, Master's Thesis, Yonsei University.
  29. Saeki, T., Ohga, H., Nagataki, S. (1990). Change in microstructure of concrete due to carbonation, Concrete Library of JSCE, 18(12), 1-11.