• Title/Summary/Keyword: 콘칼로리미터

Search Result 158, Processing Time 0.022 seconds

A Study on Combustion Characteristics of Flame Retardant Treated Pinus Densiflora (방염처리 육송의 연소특성 연구)

  • Choi, Jung-Min;Ro, Ho-Seung;Jin, Young-Hwa
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.57-62
    • /
    • 2011
  • The combustion characteristic was evaluated for Pinus densiflora, used as a building material in Hanok, which were treated with two different flame retardant method. The specimen was brushed with flame retardant liquid two or three times and then let the specimen dehydrated during 24 h for spreaded treating. And the other specimen was soaked in the liquid for 72 h. The test methods were inflammability test using meker burner and heat release rate test using cone calorimeter. As a result for the tests, flame retardant treated specimens met the requirements of the inflammability and the spreaded treated method was more efficient than immersed method. The spreaded treated specimen had lower combustive properties than immersed specimen in TTI (time to ignition), PHRR (peak heat release rate), MLR (mass loss rate) and THR (total heat release).

The Combustion Characteristics of Tree Branches, Barks, Living Leaves and Dead Leaves in Pinus Densiflora and Quercus Dentata (소나무와 떡갈나무의 주요 부위별 연소특성에 관한 연구)

  • Park, Young-Ju;Lee, Si-Young;Sin, Young-Ju;Kim, Su-Young;Kim, Young-Tak;Lee, Hae-Pyeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.303-307
    • /
    • 2008
  • In this study, we have carried out the cone calorimeter test to examine the thermal characteristics, such as total smoke production(TSP), smoke temperature and oxygen consumption, of significant parts of above trees which are representative species of Young Dong Province of Korea. The smoke production of dead leaves and living leaves of pinus densiflora was increased rapidly at the early period of combustion. So the total smoke production of this parts was 8.3 times higher than other parts. The TSP of branches and barks of quercus dentata was 14.4 and 7.2 times higher than of pinus densiflora respectively. And also the maximum smoke temperature was about $338.35{\sim}353.25\;K$. The significant difference of oxygen consumption was not detected for dead leaves, branches and barks. However, the oxygen consumption of living leaves which have high percentage of moisture content is the lowest.

  • PDF

Combustion Characteristics of Pinus rigida Specimens Treated with Phosphorus-Nitrogen Additives (인-질소 첨가제로 처리된 리기다 소나무 시험편의 연소특성)

  • Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.13-19
    • /
    • 2015
  • This study was performed to test the combustive properties of Pinus rigida specimens treated with phosphorus (P) and nitrogen (N) additives. Each Pinus rigida specimen was painted three times with 15 wt% P-N additive solutions at room temperature. After drying the treated specimens, the combustion properties were examined using a cone calorimeter (ISO 5660-1). The time to ignition (TTI) for the treated specimens was 90 to 148 s except for the specimen treated with PP/$4NH_4^+$, and the time to flameout (TF) was 556 to 633 s, which was longer than that of virgin plate. While the The specimens treated with P-N additives showed 12.5 to 43.4% higher mean heat release rate ($HRR_{mean}$) and 11.8 to 43.1% higher total heat release (THR) than virgin plate. The effective heat of combustion (EHC) was by 2.9 to 17.5% lower than that of virgin plate. It can thus be concluded that the combustion-retardation properties were partially improved compared to those of virgin plate.

The Thermal Characteristics of Tree Branches, Barks, Living Leaves and Dead Leaves in Pinus Densiflora and Quercus Dentata (소나무와 떡갈나무의 주요 부위별 열적특성에 관한 연구)

  • Park, Young-Ju;Lee, Si-Young;Lee, Hae-Pyeong
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.84-92
    • /
    • 2008
  • Disclosed is a study related to the thermal characteristics of Pinus densiflora and Quercus dentate identifying the presence of any significant difference in the above trees, which are native to Young Dong Province of Korea, according to different regions of the trees such as branches, barks, living leaves and dead leaves. For this purpose, we have carried out a cone calorimeter test focusing on the variables such as mass loss, heat release, ignition time, flame holding time and concentrations of CO and $CO_2$. The results showed that the total mass loss was greatest in tree branches, whereas the ignition time of dead leaves was fastest both in Pinus densiflora and Quercus dantata. The flame holding times of dead leaves and barks were about $640{\sim}1,016s$ and the total heat release of dead leaves was around 60.1 $MJ/m^2$, twice the total heat release of living leaves. In addition, the maximum exhaust concentrations of CO and $CO_2$ in tree branches of Quercus dentata was 2.82 times higher than those of Pinus densiflora, respectively. From the foregoing, it was confirmed that there exist region-specific differential thermal characteristics in Pinus densiflora and Quercus dentata.

Combustive Characteristics of Pinus Rigida Specimens Treated with Bis-(dialkylaminoalkyl) Phosphinic Acid Derivatives (비스-디알킬아미노알킬 포스핀산 유도체로 처리된 리기다 소나무 시험편의 연소특성)

  • Jin, Eui;Chung, Yeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.633-638
    • /
    • 2013
  • This study was performed to test the combustive properties of pinus rigida specimens treated with bis-(dimethylaminomethyl) phosphinic acid, bis-(diethylaminomethyl) phosphinic acid (DEDAP), and bis-(dibuthylaminomethyl) phosphinic acid. Pinus rigida specimens were painted in three times with 15 wt% bis-(dialkylaminoalkyl) phosphinic acid solutions at the room temperature. After drying the treated specimens, combustive properties were examined by the cone calorimeter (ISO 5660-1). Combustion-retardation properties were found to be improved partially due to the treated bis-(dialkylaminoalkyl) phosphinic acids in the virgin pinus rigida. In particular, the specimens treated with DEDAP showed both the lower total heat release rate ($60.9MJ/m^2$) and effective heat of combustion (15.20 MJ/kg) than those of virgin plates. Compared with virgin pinus rigida plates, specimens treated with the bis-dialkylamimoalkyl phosphinic acid derivatives showed partially low combustive properties.

Combustion Characteristics of Swine Manure, Poultry Manure and Mixtures (돈분, 계분 그리고 혼합물에 대한 연소특성)

  • Chung, Yeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.616-620
    • /
    • 2013
  • In this work, the combustive properties of the swine manure, poultry manure, and mixtures based on the resource recycling-energy were investigated. After the specimens were dried to a constant weight by dry oven, combustive properties were tested by the cone calorimeter (ISO 5660-1). It was found that the peak effective heat of combustion (PEHC) in the swine manure (78.72 MJ/kg) has risen due to more amount of the hydrocabon compared with poultry manure (69.41 MJ/kg), also the swine manure increased both of the higher $CO_2$ production rate (0.1959 g/s) and total smoke release rate (THRR) ($419m^2/m^2$) than those of the poultry manure. However, both of the CO production release (0.0996 kg/kg) and CO production rate (0034 g/s) in the poultry manure increased due to more amount of the inorganic contents compared with swine manure. Thus, the high combustion energy is expected to generate depend on the hydrocarbon content.

Combustion Chracteristics of the Pinus rigida and Castanea savita Dried at Room Temperature (실온에서 건조된 리기다 소나무와 밤나무의 연소특성)

  • Chung, Yeong-Jin;Jin, Eui
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.86-92
    • /
    • 2010
  • One of the limitation of wood as building materials is its flammability. The purpose of this paper is to examine the combustion properties of the Pinus rigida and Castanea savita which are grown in Korea and meet the desirable characteristics for use of construction materials. The cone calorimeter (ISO 5660-1) was used to determine the heat release rate (HRR) and fire smoke index, as well as CO and $CO_2$ production and smoke obscuration. The $HRR_{mean}$ of the Castanea savita and Pinus rigida at $50\;kW/m^2$ of radiant heat flux was $70.4\;kW/m^2$ and $68.5\;kW/m^2$. Furthermore, the THR of Castanea sativata was 120.8 MJ/kg and it was higher than the THR of Pinus rigida ($81.9\;MJ/m^$). These results are depend on the bulk density of tested wood species. The Castanea savita has high $CO_{mean}$ yield and high CO/$CO_2$ yield compared with that of Pinus rigida.

Design of Fire Source for Railway Vehicles and Measurement of Critical Velocity in Reduced-Scale Tunnels (축소터널 철도차량 화원 설계 및 임계속도 측정연구)

  • Park, Won-Hee;Hwang, Sun-Woo;Kim, Chang-Yong
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.59-68
    • /
    • 2020
  • In this study, the authors designed a reduced-scale railway vehicle fire, which was necessary for evaluating the fire safety of railway tunnels using a reduced model. To overcome the shortcomings of the methods used in conventional reduced-scale railway tunnel tests, the authors simulated the fire source of a railway vehicle using a methanol fire source for fire buoyancy, and a smoke cartridge for smoke visualization. Therefore, the heat release mass consumption rates of various methane trays were measured using a cone calorimeter (ISO 5660). The critical ventilation velocity in the railway tunnels was obtained using the designed fire source of the railway vehicle, which was evaluated by the measured temperature at the top of the tunnel as well as laser visualization.

Effects of Char Produced from Burning Wood Combustibles on Thermal Pyrolysis (목재 가연물의 연소 시 생성되는 탄화가 열분해에 미치는 영향)

  • Hong, Ter-Ki;Ryu, Myung-Ho;Lee, Jong Won;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.7-12
    • /
    • 2019
  • To investigate the influence of the char layer formed during the combustion process on the pyrolysis of wood combustibles, ISO 5660-1 cone calorimetry experiments and Fire dynamics simulator (FDS) simulations were performed, and the results from these two methods were compared. The wood combustible selected as the fuel for this study, Douglas fir, has been widely used for the production of building materials, furniture, etc. The heat release rate (HRR) measured from the cone calorimetry experiment was in good agreement with the result predicted by the FDS simulation. However, the FDS simulation failed to predict the heat released by the smoldering combustion process, due to the absence of the char surface reaction in the model. The FDS simulation results clearly indicate that the char layer formed on the surface of combustibles produces a thermal barrier which prevents heat transfer to the interior, thickening the thermal depth and thus reducing the pyrolysis rate of combustibles.

Combustional Characteristics of Living Leaves for Five Shrubs in Youngdong Areas (영동지역 관목류 5가지 수종 생엽의 연소특성)

  • Lee, Hae-Pyeong;Lee, Si-Young;Park, Young-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.81-87
    • /
    • 2009
  • In this study, we have investigated the combustibility of five shrubs growing in Youngdong area such as Lindera obtusiloba, Lespedeza maximowiczii, Zanthoxylum piperitum, Zanthoxylum schinifolium, and Corylus heterophylla var. thunbergii using the ignition temperature tester, the cone calorimeter and the smoke density chamber in order to estimate the danger of a forest fire. The results showed that Lespedeza maximowiczii has the lowest ignition temperature, the fastest ignition time and the highest average release concentrations of CO and $CO_2$. Zanthoxylum piperitum and Zanthoxylum schinifolium showed the highest level in heat release and smoke release, respectively. Therefore, we have concluded that Lespedeza maximowiczii has the highest ignitibility, Zanthoxylum piperitum the most intensive fire spread and fire intensity, and Zanthoxylum schinifolium and Lespedeza maximowiczii most difficult to escape from a forest fire.