Combustion Chracteristics of the Pinus rigida and Castanea savita Dried at Room Temperature

실온에서 건조된 리기다 소나무와 밤나무의 연소특성

  • 정영진 (강원대학교 소방방재공학과) ;
  • 진의 (강원대학교 소방방재연구센터)
  • Received : 2010.04.07
  • Accepted : 2010.06.11
  • Published : 2010.06.30

Abstract

One of the limitation of wood as building materials is its flammability. The purpose of this paper is to examine the combustion properties of the Pinus rigida and Castanea savita which are grown in Korea and meet the desirable characteristics for use of construction materials. The cone calorimeter (ISO 5660-1) was used to determine the heat release rate (HRR) and fire smoke index, as well as CO and $CO_2$ production and smoke obscuration. The $HRR_{mean}$ of the Castanea savita and Pinus rigida at $50\;kW/m^2$ of radiant heat flux was $70.4\;kW/m^2$ and $68.5\;kW/m^2$. Furthermore, the THR of Castanea sativata was 120.8 MJ/kg and it was higher than the THR of Pinus rigida ($81.9\;MJ/m^$). These results are depend on the bulk density of tested wood species. The Castanea savita has high $CO_{mean}$ yield and high CO/$CO_2$ yield compared with that of Pinus rigida.

건자재로서 나무 결함중의 하나는 화재에 대한 취약성이다. 본 연구의 목적은 한국에서 자란 리기다 소나무와 밤나무의 연소성질을 시험하는 것과 건자재로서의 사용에 대한 바람직한 특성을 알아내는 것이다. 콘칼로리미터(ISO 5660-1)는 열방출율과 CO, $CO_2$ 발생과 연기차폐와 같은 연기지수를 측정하는 데 이용되었다. $50kW/m^2$의 외부 열유속하에서 밤나무의 평균열방출율($HRR_{mean}$)은 소나무의 평균열방출율 $68.5kW/m^2$과 비교하여 $70.4kW/m^2$을 나타내었다. 게다가 총열방출율(THR)은 밤나무($120.8MJ/m^2$)가 소나무($81.9MJ/m^2$)보다 높게 나타났다. 이들 결과는 시험된 나무종의 체적밀도에 의존된다. 밤나무는 소나무에 비하여 높은 $CO_{mean}$ 수율과 높은 CO/$CO_2$ 수율을 나타내었다.

Keywords

References

  1. M.J. Spearpoint and G.J. Quintiere, "Predicting the Burning of Wood Using an Integral Model", Combustion and Flame, Vol.123, pp.308-324(2000). https://doi.org/10.1016/S0010-2180(00)00162-0
  2. W.S. Atkins, "Wood Utilisation Systems-Combustion Strateges", Energy Technolodge Support unit, Department of Energy, U.K.(1984).
  3. F. Shafizadeh and W.F. DeGroot, "Combustion Characteristics of Cellulosic Fuels" In: edds. F. Shafizadeh, K.V. Sarkenen, and D.A. Tillman, Thermal Uses and Properties of Carbohydrates and Lignins, Academic Press, New York, U.S.A.(1976).
  4. F.L Browne, "USDA Forest Service Forest Products Laboratory Report 2136", USDA Forest Service Forest Products Laboratory, Madison, Wis.1958; reviewed and refirmed(1963).
  5. F.C. Beall and H.W. Eickner, "Research Paper FPL 130", USDA Forest Service Forest Products Laboratory, Madison, Wis.(1970).
  6. D. Drysdale, "An Introduction to Fire Dynamics", john Wily & Sons, U.S.A.(1996).
  7. F.M. Pearce, Y.P. Khanna, and D. Raucher, "Thermal Analysis in Polymer Flammability", Chap. 8, Thermal Characterization of Polymeric Materials, Academic Press, New York, U.S.A.(1981).
  8. M.J. Spearpoint, "Predicting the Ignition and Burning Rate of Wood in the Cone Calorimeter Using an Intergral Model", pp.30-46. NIST GCR 99-775, U.S.A.(1999).
  9. L. Yang, X. Chen, X. Zhou, and W. Fan, "The Pyrolysis and Ignition of Charring Matrials Under an External Heat Flux", Combustion and Flame Vol.133, pp.407-413(2003). https://doi.org/10.1016/S0010-2180(03)00026-9
  10. V. Babrauskas, "New Technology to Reduce Fire Losses and Costs", eds. S.J. Grayson and D.A. Smith, Elsevier Appied Science Publisher, London (1986).
  11. N. Boonme and J.G. Quintiere, "Glowing and Flaming Autoignition of Wood", Twenty-ninth Symposioum (International) on combustion, The Combustion Institute, Vol.29, pp.289-296(2002).
  12. N. Boonme and J.G. Quintiere, "Glowing Ignition of Wood", the onset of surface combustion, Thirtieth Symposioum (International) on combustion, The Combustion Institute, Vol.30, pp.2303-2310(2005).
  13. E. Mikkola, "Charring of Wood Based Materials", pp.547-556, Fire Safety Science, Proceedings of the Third International Symposium, Elsevier, Applied Science, London(1991).
  14. J.G. Quintiere, "A Semi-quantitative Model for the Burning Rate of Solid Materials", NISTIR 4840, National Institute of Standards and Technology, Gaithersburg, MD(1992).
  15. M.M. Hirschler, "Fire Hazard and Toxic Potency of the Smoke from Burning Materials", Advances in Combustion Toxicology Vol.2, pp.229-230(1990).
  16. Y.J. Chung, "Combustion Characterisics of the Pinus Rigida and Castanea Savita Using Cone Calorimeter", Journal of Korean Forest Society, Vol.98, No.3, pp.319-323(2009).
  17. ISO 5660-1, "Reaction-to-Fire Tests NHeat Release, Smoke Production and Mass Loss Rate - Part 1: Heat Release Rate (Cone Calorimeter Method)" (2002).
  18. EN 13823, "Reaction to Fire Tests for Building Products. Building Products Excluding Floorings Exposed to the Thermal Attack by a Single Burning Item"(2002).
  19. M. Hirschler, "Thermal Decomposition and Chemical Composition", pp.239-300, American Chemical Society Symposium Series 797(2001).
  20. W.T. Simpso, "Drying and Control of Moisture Content and Dimensional Changes", Chap. 12, pp.1- 21, In: Wood Handbook-Wood as an Engineering Material, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, U.S.A.(1987).
  21. J.D. DeHaan, "Kirks's Fire Investigation", pp.84-112. fifth edition, Prentice Hall(2002).
  22. V. Babrauskas, "Development of Cone Calorimeter- A Bench-scale Heat Release Rate Apparatus Based on Oxygen Consumption", Fire and Materials, Vol.8, No.2, pp.81-95(1984). doi: 1002/fam.810080206.
  23. V. Babrauskas and S.J. Grayson, "Heat Release in Fires", p.644, E & FN Spon (Chapman and Hall), London, UK(1992).
  24. H.C. Tran and R.H. White, "Burning Rate of Solid Wood Measured in a Heat Release Calorimeter", Fire and Materials, Vol.16, pp.197-206(1992). https://doi.org/10.1002/fam.810160406
  25. V. Babrauskas, "Heat Release Rate", Section 3, In: The SFPE Handbook of Fire Protection Engineering, Fourth ed., National Fire Protection Association, Massatusetts, U.S.A.(2008).
  26. J.G. Quintire, "Principles of Fire Behavior", Chap. 5, Cengage Learning, Delmar, U.S.A.(1998).
  27. M. Risholm-Sundman, M. Lundgren, E. Vestin, and P. Herder, "Emissions of Acetic Acid and other Volatile Organic Compounds from Different Species of Solid Wood", Holz alas Rohund Werkstoff, Vol.56, No.2, pp.125-129(1998). https://doi.org/10.1007/s001070050282
  28. A.D. Chirico, M. Armanini, P. Chini, G. Cioccolo, F. Provasoli, and G. Audiso, "Flame Retardants for Polypropylene Based on Lignin", Polymer Degradation and Stability, Vol.79, pp.139-145(2002).
  29. T.R. Hull and K.T. Paul, "Bench-sacale Assessment of Combustion Toxicity-A Critiacal Analysis of Current Protocols", Fire Safety Journal, Vol.42, pp.340-365(2007). https://doi.org/10.1016/j.firesaf.2006.12.006
  30. M. Staudt, N. Bertin, U. Hansen, G. Seufert, P. Cieeioli, P. Foster, B. Frenzel, J.L. Fugit, and L. Torres, "The BEMA-project: Seasonal and Diurnal Patterns of Monoterpene Emissions from Pinus Pinea (L.)", Atmospheric Environment, Vol.31, pp.145-156(1997).