Browse > Article
http://dx.doi.org/10.14478/ace.2013.1087

Combustive Characteristics of Pinus Rigida Specimens Treated with Bis-(dialkylaminoalkyl) Phosphinic Acid Derivatives  

Jin, Eui (Fire & Disaster Prevention Research Center, Kangwon National University)
Chung, Yeong-Jin (Department of Fire & Disaster Prevention, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.24, no.6, 2013 , pp. 633-638 More about this Journal
Abstract
This study was performed to test the combustive properties of pinus rigida specimens treated with bis-(dimethylaminomethyl) phosphinic acid, bis-(diethylaminomethyl) phosphinic acid (DEDAP), and bis-(dibuthylaminomethyl) phosphinic acid. Pinus rigida specimens were painted in three times with 15 wt% bis-(dialkylaminoalkyl) phosphinic acid solutions at the room temperature. After drying the treated specimens, combustive properties were examined by the cone calorimeter (ISO 5660-1). Combustion-retardation properties were found to be improved partially due to the treated bis-(dialkylaminoalkyl) phosphinic acids in the virgin pinus rigida. In particular, the specimens treated with DEDAP showed both the lower total heat release rate ($60.9MJ/m^2$) and effective heat of combustion (15.20 MJ/kg) than those of virgin plates. Compared with virgin pinus rigida plates, specimens treated with the bis-dialkylamimoalkyl phosphinic acid derivatives showed partially low combustive properties.
Keywords
bis-(dialkylaminoalkyl) phosphinic acid; combustive properties; total heat released rate; effective heat of combustion;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 E. Baysal, M. Altinok, M. Colak, S. K. Ozaki, and H. Toker, Fire resistance of douglas fir (psedotsuga menzieesi) treated with borates and natural extractives, Bioresour. Technol., 98, 1101 (2007).   DOI   ScienceOn
2 O. Grexa, E. Horvathova, O. Besinova, and P. Lehocky, Falme retardant treated plyood, Polym. Degrad. Stab., 64, 529 (1999).   DOI   ScienceOn
3 Y. J. Chung, Comparison of combustion proprties of native wood species used for fire pots in Korea, J. Ind. Chem. Eng., 16, 15 (2010).   DOI   ScienceOn
4 Article 43 of Building Code, Article 61 of Enforcement Ordinance, the Internal Finish Material of the Building (2004).
5 Article 12 of Fire fighting Basic Law, Article 20 of Decree, the Subject Merchandise Flame and Flame Performance Standard (2005).
6 P. W. Lee and J. H. Kwon, Effects of the treated chemicals on fire retardancy of fire retardant treated particleboards, Mogjae-Gonghak, 11, 16 (1983).
7 T. S. Mcknight, The hygroscopicity of Wood Treated with Fire-retarding Compounds, Fore. Prod. Res. Branch, Dep. of Forestry, Canada. Report No. 190 (1962).
8 J. C. Middleton, S. M. Dragoner, and F. T. Winters, Jr., An evaluation of borates and other inorganic salts as fire retardants for wood products, Fore. Prod. J., 15, 463 (1965).
9 I. S. Goldstein and W. A. Dreher, A. non-hygroscopic fire retardant treatment for wood, Froe. Prod. J., 11, 235 (1961).
10 R. Kozlowski and M. Hewig, 1st Int Conf. Progress in Flame Retardancy and Flammability Testing, Institute of Natural Fibres, Pozman, Poland (1995).
11 R. Stevens, S. E. Daan, R. Bezemer, and A. Kranenbarg, The strucure- activity relationship of retardant phosphorus compounds in wood, Polym. Degrad. Stab., 91, 832 (2006).   DOI   ScienceOn
12 Y. J. Chung, Y. H. Kim, and S. B. Kim, Flame retardant properties of polyurethane produced by the addition of phosphorous containing polyurethane oligomers (II), J. Ind. Chem. Eng., 15, 888 (2009).   DOI   ScienceOn
13 Y. J. Chung, Flame retardancy of veneers treated by ammonium salts, J. Korean Ind. Eng. Chem., 18, 251 (2007).
14 M. L. Hardy, Regulatory status and environmental properties of brominated flame retardants undergoing risk assessment in the EU: DBDPO, OBDPO, PeBDPO, and HBCD, Polym. Degrad. Stab., 64, 545 (1999).   DOI   ScienceOn
15 Y. Tanaka, Epoxy Resin chemistry and Technology, Marcel Dekker, New York (1988).
16 V. Babrauskas, New Technology to reduce Fire Losses and Costs, eds. S. J. Grayson and D. A. Smith, Elsevier Appied Science Publisher, London, UK (1986).
17 M. M. Hirschler, Thermal decomposition and chemical composition, 239, ACS Symposium Series, 797 (2001).
18 ISO 5660-1, Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate-Part 1 : Heat Release Rate (Cone Calorimeter Method), Genever (2002).
19 C. H. Lee, C. W. Lee, J. W. Kim, C. K. Suh, and K. M. Kim, Organic phosphorus-nitrogen compounds, manufacturing method and compositions of flame retardants containing organic phosphorus- nitrogen compounds, Korean Patent, 2011-0034978 (2011).
20 Y. J. Chung and E. Jin, Synthesis of dialkylaminoalkyl phosphonic acid and bis(dialkylaminoalkyl) phosphinic acid derivatives, Appl. Chem. Eng., 23, 383 (2012).
21 Cischem Com, Flame Retardants, Chischem. Com. CO., Ltd (2009).
22 J. D. DeHaan, Kirks's Fire Investigation, Fifth Edition, 84, Prentice Hall, New Jersey, U.S.A. (2002).
23 W. T. Simpso, Drying and Control of Moisture Content and Dimensional Changes, Chap. 12, 1, Wood Handbook-Wood as an Engineering Material, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, U.S.A. (1987).
24 M. J. Spearpoint, Predicting the Ignition and Burning Rate of Wood in the Cone Calorimeter Using an Intergral Model, 30. NIST GCR 99-775, U.S.A. (1999).
25 F. M. Pearce, Y. P. Khanna, and D. Raucher, Thermal Analysis in Polymer Flammability, Chap. 8, Thermal Characterization of Polymeric Materials, Academic Press, New York, U.S.A. (1981).
26 V. Babrauskas, Development of cone calorimeter-a bench-scale heat release rate apparatus based on oxygen consumption, Fire Mater., 8, 81 (1984). doi: 1002/fam.810080206.   DOI   ScienceOn
27 V. Babrauskas and S. J. Grayson, Heat Release in Fires, 644, E & FN Spon (Chapman and Hall), London, UK (1992).
28 M. Risholm-Sundman, M. Lundgren, E. Vestin, and P. Herder, Emissions of acetic acid and other volatile organic compounds from different species of solid wood, Holz als Roh-und Werkstoff, 56, 125 (1998).   DOI   ScienceOn
29 V. Babrauskas, Heat Release Rate, Section 3, The SFPE Handbook of Fire Protection Engineering, Fourth ed., National Fire Protection Association, Massatusetts, U.S.A. (2008).
30 S. Giraud, S. Bourbigot, M. Rochery, I. Vroman, L. Tighzert, R. Delobel, and F. Poutch, Flame retarded polyurea with microencasulated ammonium phosphate for textile coating, Polym. Dgred.Stab., 88, 106 (2005).   DOI   ScienceOn
31 M. Hagen, J. Hereid, M. A. Delichtsios, J. Zhang, and D. Bakirtzis, Flammability assesment of fire-retarded nordic spruce wood using thermogravimetric analyses and cone calorimettry, Fire Safety J., 44, 1053 (2009).   DOI   ScienceOn
32 J. M. Choi, A study on combustion Characteristics of fire retardant treated pinus desiflora and pinus koraensis, Mokchae Konghak, 39, 244 (2011).
33 M. Delichatsios, B. Paroz, and A. Bhargava, Flammability properties for charring materials, Fire Safety J., 38, 219 (2003).   DOI   ScienceOn
34 M. J. Spearpoint and G. J. Quintiere, Predicting the burning of wood using an integral model, combustion and flame, Combust. Flame, 123, 308 (2000).   DOI   ScienceOn
35 J. G. Quintire, Principles of Fire Behavior, Chap. 5, Cengage Learning, Delmar, U.S.A. (1998).