DOI QR코드

DOI QR Code

Design of Fire Source for Railway Vehicles and Measurement of Critical Velocity in Reduced-Scale Tunnels

축소터널 철도차량 화원 설계 및 임계속도 측정연구

  • Park, Won-Hee (Railroad Safety Research Team, Korea Railroad Research Institute) ;
  • Hwang, Sun-Woo (Railroad Safety Research Team, Korea Railroad Research Institute) ;
  • Kim, Chang-Yong (Railroad Safety Research Team, Korea Railroad Research Institute)
  • 박원희 (한국철도기술연구원 철도안전연구팀) ;
  • 황선우 (한국철도기술연구원 철도안전연구팀) ;
  • 김창용 (한국철도기술연구원 철도안전연구팀)
  • Received : 2020.03.13
  • Accepted : 2020.06.08
  • Published : 2020.08.31

Abstract

In this study, the authors designed a reduced-scale railway vehicle fire, which was necessary for evaluating the fire safety of railway tunnels using a reduced model. To overcome the shortcomings of the methods used in conventional reduced-scale railway tunnel tests, the authors simulated the fire source of a railway vehicle using a methanol fire source for fire buoyancy, and a smoke cartridge for smoke visualization. Therefore, the heat release mass consumption rates of various methane trays were measured using a cone calorimeter (ISO 5660). The critical ventilation velocity in the railway tunnels was obtained using the designed fire source of the railway vehicle, which was evaluated by the measured temperature at the top of the tunnel as well as laser visualization.

본 연구에서는 축소모형을 이용한 철도터널의 화재안전성 평가 실험시 필요한 축소모형 철도차량의 화재에 대한 설계를 수행하였다. 기존의 철도터널 축소모형 실험시 활용된 방법의 단점을 극복하기 위하여 화재부력을 위하여서는 메탄올 화원을 이용하였으며, 연기 가시화를 위하여서는 스모크카트리지를 활용하여 철도차량 화재를 모사하였다. 지하철 철도차량의 열방출률의 모사를 위하여 다양한 메탄올 연료 팬에 대하여 콘칼로리미터(ISO 5660) 및 저울을 이용하여 열방출률을 측정하였다. 설계된 축소모형 철도차량 화원을 이용하여 축소모형 철도터널에서의 임계속도를 측정하였다. 화재 임계속도는 축소모형 터널 상부에서의 온도 및 레이져를 이용한 가시화 측정결과 등을 종합적으로 검토하여 선정하였다.

Keywords

References

  1. Ministry of Construction & Transportation, "Technical Standard of Railway Facility" (2019).
  2. Ministry of Construction & Transportation, "Manual of Fire-Safety Analysis Method in Railway Tunnel" (2014).
  3. D. H. Kim, W. -H. Park, "Experiment by Using Reduced Scale Models for the Fire Safety of a Rescue Station in Very Long Tunnel in Korea", Tunnelling and Underground Space Technology, Vol. 21, No. 3-4, p. 303 (2006). https://doi.org/10.1016/j.tust.2005.12.159
  4. Korea Railroad Research Institute, "Daegok-Sosa Double Track Railway Underground Station and Tunnel Fire Model Test" (2018).
  5. Y. Yao, Y. Z. Li, H. Ingason and X. Cheng, "The Characteristics of Under-ventilated Pool Fires in both Model and Medium-scale Tunnels", Tunnelling and Underground Space Technology, Vol. 87, pp. 27-40 (2019). https://doi.org/10.1016/j.tust.2019.02.004
  6. S. Zhao, Y. Z. Li, M. Kumm, H. Ingason and F. Liu, "Re-direction of Smoke Flow in Inclined Tunnel Fires", Tunnelling and Underground Space Technology, pp. 113-127 (2019).
  7. G. Heskestad, "Physical Modeling of Fire", Journal of Fire & Flammability, Vol, 6, pp. 253-273 (1975).
  8. J. G. Quintiere, "Scaling Applications in Fire Research", Fire Safety Journal, Vol, 15, pp. 3-29 (1989). https://doi.org/10.1016/0379-7112(89)90045-3
  9. R. J. Bettis, S. F. Jagger and Y. Wu, "Interim Validation of Tunnel Fire Consequence Models:Summary of Phase 2 Tests", Health and Safety Executive (1993).
  10. Y. Oka and G. T. Atkinson, "Control of Smoke Flow in Tunnel Fires", Fire Safety Journal, Vol. 25, pp. 305-322 (1995). https://doi.org/10.1016/0379-7112(96)00007-0
  11. Y. Wu and M. Z. A. Bakar, "Control of Smoke Flow in Tunnel Fires using Longitudinal Ventilation Systems - A Study of the Critical Velocity", Fire Safety Journal, Vol. 35, pp. 363-390 (2000). https://doi.org/10.1016/S0379-7112(00)00031-X
  12. H. Ingason, "Model Scale Railcar Fire Tests", Fire Safety Journal, Vol 42, No. 4, pp. 271-282 (2007). https://doi.org/10.1016/j.firesaf.2006.11.004
  13. Y. Z. Li, B. Lei and H. Ingason, "Study of Critical Velocity and Backlayering Length in Longitudinally Ventilated Tunnel Fires", Fire Safety Journal, Vol. 45, pp. 361-370 (2010). https://doi.org/10.1016/j.firesaf.2010.07.003
  14. Y. Z. Li, B. Lei and H. Ingason, "The Maximum Temperature of Buoyancy-driven Smoke Flow Beneath the Ceiling in Tunnel Fires", Fire Safety Journal, Vol. 46, No. 4, pp. 204-210 (2011). https://doi.org/10.1016/j.firesaf.2011.02.002
  15. Y. Z. Li and H. Ingason, "The Maximum Ceiling Gas Temperature in a Large Tunnel Fire", Fire Safety, Journal Vol. 48, pp. 38-48 (2012). https://doi.org/10.1016/j.firesaf.2011.12.011
  16. Y. Z. Li, B. Lei and H. Ingason, "Theoretical and Experimental Study of Critical Velocity for Smoke Control in a Tunnel Cross-Passage", Fire Technology, Vol. 49, No. 2, pp. 435-449 (2013). https://doi.org/10.1007/s10694-010-0170-0
  17. Y. Z. Li, B. Lei and H. Ingason, "Scale Modeling and Numerical Simulation of Smoke Control for Rescue Stations in Long Railway Tunnels", Journal of Fire Protection Engineering, Vol. 22, No. 2, pp. 101-131 (2012). https://doi.org/10.1177/1042391512445409
  18. A. Lonnermark, J. Lindstrom and Y. Z. Li, "Model-scale Metro Car Fire Tests", SP Report 2011-33. SP Technical Research Institute of Sweden (2011).
  19. A. Lonnermark, J. Lindstrom, Y. Z. Li, A. Claesson, M. Kumm and H. Ingason, "Full-scale Fire Tests with a Commuter Train in a Tunnel", SP Report 2012-05, SP Technical Research Institute of Sweden (2012).
  20. SFPE Engineering Guide, "Piloted Ignition of Solid Materials Under Radiant Exposure", Society of Fire Protection Engineers, Bethesda, Maryland, January (2002).
  21. B. Z. Dlugogorski and M. Wilson, "Effect of Lip Height on Properties of Small Scale Pool Fires", International Association for Fire Safety Science, AOFST 2 (1995).