• Title/Summary/Keyword: 침하위험도

Search Result 96, Processing Time 0.032 seconds

SURGICAL APPROACH TO THE INFRAOCCLUDED TEETH BY USING SPACE REGAINING TREATMENT (저위교합 유구치에서의 공간확장술을 이용한 외과적 접근)

  • Bang, Seok-Yun;Kim, Eun-Jung;Kim, Hyun-Jung;Kim, Young-Jin;Nam, Soon-Hyeun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.3
    • /
    • pp.531-536
    • /
    • 2005
  • Infraclusion may be defined as teeth that stop their relative occlusal movement in the dental arches during or after the period of active eruption and then remain under the occlusal plane. Delayed exfoliation, malocclusion, increased susceptibility to dental caries and periodontal disease of both the neighboring teeth and retained molar, and dislocation of the successor are the consequencces of infraclusion of primary molars. Therefore, early diagnosis and appropriate treatments are necessary. The therapeutic approach of the infracluded teeth varied from preservation to extraction. The teeth with simple infraclusion without any signs of interference with occlusal and jaw development may be examined periodically with follow-up check and radiographically. However, if the infracluded tooth interferes with normal eruption of successor or shows any sign of delayed resorption, or the tipping of adjacent teeth or supraeruption of opposing teeth is expected, the teeth inflicted should be extracted and appropriate measures should be provided in order to maintain the normal development of occlusion and dentition. The adjacent teeth which have been collapsed over a infracluded deciduous teeth can disturb the arch length perimeter. In such cases, surgical approach might be necessary, although it would be difficult when teeth are severly leaned. However, an easier surgical access have been obtained by space regaining procedures, in young patients whose arch length has been shortened due to the infracluded teeth.

  • PDF

Time-lapse Geophysical Survey Analysis for Field-scale Test bed of Excavation Construction (실규모 굴착 시험장에서의 시간경과 물리탐사 자료 분석)

  • Shin, Dong Keun;Song, Seo Young;Kim, Bitnarae;Yoo, Huieun;Ki, Jung Seck;Nam, Myung Jin
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.137-151
    • /
    • 2019
  • Geophysical exploration techniques are effective for monitoring changes in the ground condition around the excavation project to prevent subsidence risks during excavation work, therefore, improving analysis techniques is required for applying and supplementing various geophysical exploration technologies. In this study, a field-scale on-site test was conducted to detect possible ground subsidence hazards and areas of relaxation zone that may occur during excavation work and due to underground water level changes. In order to carry out the field test, a real-scale excavation test bed was constructed and the geophysical exploration methods, such as electrical resistivity survey and multi-channel analysis of surface wave (MASW) survey for urban sites condition, have researched for optimal geophysical exploration parameter, design and correlation analysis between the results by reviewing the validity of each individual geophysical exploration and modeling. The results of this study showed the impact of each geophysical exploration on the relaxation zone and, in particular, the location of the underground water surface and the effects of excavation were identified using electrical resistivity survey. Further research on modeling will be required, taking into account the effects of excavation and groundwater.

A Case Study on the Field Investigation and Stability Analysis of the Collapsed Cut-Slope in Tunnel Portal, Danyang (단양 지역 터널입구부 붕괴절토사면 현장조사 및 안정성 해석 사례 연구)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Kim, Seung-Hee
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.401-408
    • /
    • 2009
  • Old national Road No. 59 that connects Danyang and Gagok has 35 dangerous cut slopes. It is relatively narrow and has a poor alignment. The torrential rains in 2002 and 2006 has caused numerous slope collapses, landslides and road settlements in this area. The old road's high risk level lead to the planning and construction of a new national road. During the construction of the new road in December 2006, the right side of Dugcheon Tunnel entrance has collapsed and tension cracks were observed on the district road above the tunnel. In order to determine the cause of failure, intensive field investigation and monitoring cracks were performed together with Lower Hemisphere Projection Analysis, Limit Equilibrium Analysis and Finite Difference Analysis.

The Efficiency Evaluation of One Person Non-Prism Surveying System for Tunnel Measurement (터널계측을 위한 1인 무프리즘 측량시스템의 효율성 평가)

  • Park, Kyeong-Sik;Hahm, Chang-Hahk;Lee, Jae-Kee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.89-96
    • /
    • 2007
  • The tunnel measurement data such as deficiency quantity, outbreak quantity, inner displacement and crown settlement are very important elements in tunnel sites under construction and obtained mostly by displacement gauge and total station. However, it is difficult and dangerous to install targets or measurement equipments on the points in tunnel construction site and also we need several persons to work in the tunnel. Non-prism total station with remote control system which is developed recently has various efficient functions for tunnel measurement. Therefore, for efficient tunnel measurement, this study suggested one person surveying system which consisted of non-prism total station and notebook PC to control total station remotely, and we evaluated the suggested tunnel measurement system. In this study, the tunnel site under construction was chosen as the test field and tunnel surveying was done by existing surveying method and suggested method separately. As result of the test, we analyzed processing time and accuracy to demonstrate the superiority of suggested one person non-prism surveying system.

  • PDF

System Reliability Analysis of a Shallow Foundation using Correlated Failure Modes (유상관 파양류형에 의한 얕은 기초의 신뢰도 해석)

  • Kim, Yong-Pil;Im, Byeong-Jo;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.67-78
    • /
    • 1986
  • This paper presents how to determine the system reliability of a typical shallow foundation constituted four potential correlated failure modes of hearing capacity (BCM), consolidation settlement (CSM), moment (MFM), and tension shear (PCM). Through the idenfication of the distinct and different modes and evaluation of range of system reliability, the obtained conclusions are as follows; 1. The CSM and the PCM are the lowest and highest of reliability indices of single performance function, and the BCM and the MFM are medium of them. 2. For the correlated failure modes, the hi-modal bounds Is narrower and lower of failure probability than the unimodal bounds. Not to be overestimated, therefore, the system reliability should be based on the second-order bounds using correlated performance functions.

  • PDF

Investigating the Status of Mine Hazards in North Korea Using Satellite Pictures (위성사진을 활용한 북한 지역 광산의 광해 현황 연구)

  • Yoon, Sungmoon;Jang, Hangsuk;Yun, Seong-Taek;Kim, Duk-Min
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.564-575
    • /
    • 2018
  • Recently, the possibility of promoting inter-Korean economic cooperation is increasing because the tension between South and North Korea is being reduced. Consequently, the interest in North Korea's mine development projects is growing as one of the aspects of inter-Korean economic cooperation. In the promotion of cooperation in mining development, mine hazard risk management should be considered. However, there is a lack of information pertaining to mine hazards in North Korea. To this end, this study was performed to determine the status of mining-related hazards in 12 mines in North Korea by using the image analysis feature of Google Earth. From the results obtained, we observed some mining-related hazards such as tailing dam failures, yellow boy phenomenon, and land subsidence.

Hydraulic Experiment on Roughness Coefficient of PE pipe (폴리에틸렌관의 조도계수에 관한 수리모형실험)

  • Dongwoo Ko;Byeong Wook Lee;Jae-Seon Yoon;Hyun-Gu Song
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.288-288
    • /
    • 2023
  • 도로, 철도 등의 횡단통로, 오폐수관로, 지하배수관 등 연약지반에서 상재하중과 부등침하에 의한 파괴 위험을 줄이기 위해 구조적인 안전성과 내구성이 개선된 다양한 관로들이 활용되고 있다. 관은 매설특성에 따라 콘크리트관, 도관, 합성수지관, 덕타일 주철관, 파형강관, 유리섬유 강화 플라스틱과 폴리에스테르수지 콘크리트관 등의 종류로 구분된다(환경부, 2017). 수리설계 시 이러한 관의 단면 규모 결정 및 흐름 특성을 파악하기 위해 관수로 유량측정에 이용되는 Manning의 경험식을 이용하고 있으며, 관로의 주요 재질에 따른 다양한 조도계수가 제시되어 있다. 새로운 재질을 이용하여 제작된 관은 수리실험을 통해 조도계수를 결정하는 것이 바람직하지만, 조도계수 실험은 대규모의 실험시설과 유량공급이 요구되기 때문에 여러 한계가 있다. PE관의 경우, 미국의 ASTM 표준에 의해 저밀도 폴리에틸렌(LDPE), 선형 저밀도 폴리에틸렌(LLDPE), 고밀도 폴리에틸렌(HDPE) 등으로 분류되는데 본 연구에서는 HDPE 재질의 서로 직경이 다른 다중벽관 PE관을 대상으로 조도계수를 결정하기 위한 현장 실규모 수리실험을 수행하였다. 본 실험에서는 식생, 수로의 불규칙성, 수로노선, 침전과 세굴, 장애물, 계절적 변화, 부유물질과 소류사는 무시되며 표면조도, 관의 크기와 형상, 수위와 유량이 조도계수에 영향을 미치는 주요 인자라고 할 수 있다. 수리실험은 실물모형(Prototype)으로 한국농어촌공사 농어촌연구원의 대형수리모형실험장에서 수행되었으며. 길이 24 m, 직경 150 mm의 PE 관은 고정식 개수로, 직경 800 mm의 관은 대형유사순환수로에 각각 설치되었다. 관로의 전면에 차폐막을 설치하여 상류부 수위를 안정시킨 상태에서 실험을 수행하였고, 차폐막으로부터 하류방향으로 약 7 m(측정기준지점), 11 m, 13 m, 15 m, 17 m 떨어진 곳에서 각각 수위와 유속을 측정하였다. 실험 결과, φ150관은 직경대비 수심이 클수록 조도계수가 감소하는 경향이 나타났고, φ800관은 직경대비 수심의 변화에 따른 조도계수의 경향이 크게 드러나지 않았다. 결론적으로 PE관의 조도계수는 수심별로 변화하는 것으로 나타났으며, 특정 수심을 지나면 조도계수가 다시 감소할 것으로 판단된다.

  • PDF

Evaluation on Spectral Analysis in ALOS-2 PALSAR-2 Stripmap-ScanSAR Interferometry (ALOS-2 Stripmap-ScanSAR 위상간섭기법에서의 스펙트럼 분석 평가)

  • Park, Seo-Woo;Jung, Seong-Woo;Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.351-363
    • /
    • 2020
  • It is well known that alluvial sediment located in coastal region has been easily affected by geohazard like ground subsidence, marine or meteorological disasters which threaten invaluable lives and properties. The subsidence is a sinking of the ground due to underground material movement that mostly related to soil compaction by water extraction. Thus, continuous monitoring is essential to protect possible damage from the ground subsidence in the coastal region. Radar interferometric application has been widely used to estimate surface displacement from phase information of synthetic aperture radar (SAR). Thanks to advanced SAR technique like the Small BAseline Subset (SBAS), a time-series of surface displacement could be successfully calculated with a large amount of SAR observations (>20). Because the ALOS-2 PALSAR-2 L-band observations maintain higher coherence compared with other shorter wavelength like X- or C-band, it has been regarded as one of the best resources for Earth science. However, the number of ALOS-2 PALSAR-2 observations might be not enough for the SBAS application due to its global monitoring observation scenario. Unfortunately, the number of the ALOS-2 PALSAR-2 Stripmap images in area of our interest, Busan which located in the Southeastern Korea, is only 11 which is insufficient to apply the SBAS time-series analysis. Although it is common that the radar interferometry utilizes multiple SAR images collected from same acquisition mode, it has been reported that the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometric application could be possible under specific acquisition mode. In case that we can apply the Stripmap-ScanSAR interferometry with the other 18 ScanSAR observations over Busan, an enhanced time-series surface displacement with better temporal resolution could be estimated. In this study, we evaluated feasibility of the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometric application using Gamma software considering differences of chirp bandwidth and pulse repetition frequency (PRF) between two acquisition modes. In addition, we analyzed the interferograms with respect to spectral shift of radar carrier frequency and common band filtering. Even though it shows similar level of coherence regardless of spectral shift in the radar carrier frequency, we found periodic spectral noises in azimuth direction and significant degradation of coherence in azimuth direction after common band filtering. Therefore, the characteristics of spectral bandwidth in the range and azimuth direction should be considered cautiously for the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometry.

Overall risk analysis of shield TBM tunnelling using Bayesian Networks (BN) and Analytic Hierarchy Process (AHP) (베이지안 네트워크와 AHP (Analytic Hierarchy Process)를 활용한 쉴드 TBM 터널 리스크 분석)

  • Park, Jeongjun;Chung, Heeyoung;Moon, Joon-Bai;Choi, Hangseok;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.453-467
    • /
    • 2016
  • Overall risks that can occur in a shield TBM tunnelling are studied in this paper. Both the potential risk events that may occur during tunnel construction and their causes are identified, and the causal relationship between causes and events is obtained in a systematic way. Risk impact analysis is performed for the potential risk events and ways to mitigate the risks are summarized. Literature surveys as well as interviews with experts were made for this purpose. The potential risk events are classified into eight categories: cuttability reduction, collapse of a tunnel face, ground surface settlement and upheaval, spurts of slurry on the ground, incapability of mucking and excavation, and water leakage. The causes of these risks are categorized into three areas: geological, design and construction management factors. Bayesian Networks (BN) were established to systematically assess a causal relationship between causes and events. The risk impact analysis was performed to evaluate a risk response level by adopting an Analytic Hierarchy Process (AHP) with the consideration of the downtime and cost of measures. Based on the result of the risk impact analysis, the risk events are divided into four risk response levels and these levels are verified by comparing with the actual occurrences of risk events. Measures to mitigate the potential risk events during the design and/or construction stages are also proposed. Result of this research will be of the help to the designers and contractors of TBM tunnelling projects in identifying the potential risks and for preparing a systematic risk management through the evaluation of the risk response level and the migration methods in the design and construction stage.

Estimation of the Deformation Modulus for a Fault Zone using Crown Settlements Measured During Tunnel Excavation (터널 굴착 중 측정된 천단변위를 이용한 단층대의 변형계수 산정)

  • Yun, Hyun-Seok;Moon, Seong-Woo;Song, Gyu-Jin;Seo, Yong-Seok;Kim, Ji-Soo;Woo, Sang-Baik
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.227-235
    • /
    • 2014
  • The deformation modulus is one of the essential factors in determining ground behavior and safety during tunnel excavation. In this study, we conducted a back-analysis using crown settlements measured during tunnel excavation, using a horizontal inclinometer on a fault zone of pegmatite, and calculated the deformation modulus of the fault zone. This deformation modulus calculation was then compared with deformation moduli found through established relationships that use the correlation between RMR and the deformation modulus, as well as the results of pressure-meter tests. The deformation moduli calculated by back-analysis differs significantly from the deformation moduli determined through established relationships, as well as the results from pressure-meter tests conducted across the study area. Furthermore, the maximum crown settlements derived from numerical analysis conducted by applying deformation moduli determined by these established relationships and the pressure-meter tests produced noticeable differences. This result indicates that in the case of a weak rock mass, such as a fault zone, it is inappropriate to estimate the deformation modulus using preexisting relationships, and caution must be taken when considering the geological and geotechnical characteristics of weak rock.