• Title/Summary/Keyword: 최대 저항능력

Search Result 70, Processing Time 0.021 seconds

Stability of Analytical Fragility Curve of Bridge on Elastic Modulus (탄성계수의 변화에 따른 교량의 해석적 손상도 곡선의 안정성)

  • Lee, Jong-Heon;Kang, Shin-Yeol;Kim, Tae-Hyeong;Lee, Soo-Choul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.175-182
    • /
    • 2008
  • In performing a risk analysis of structure for earthquake, it is imperative to identify the vulnerability of structures associated with various stages of damage. And the earthquake resisting capability is needed for structures like bridge. So the damage analysis of bridges with or without isolator for earthquake effects is necessary. In this paper, the risk analysis of seismic isolated LRB bridges considering earthquake effects such as PGA, PGV, SA, SV, and SI is performed using fragility curves to assure the earthquake resisting capability of the structures. And, the stability of fragility curve is investigated with respect to elastic modulus.

Stress Analysis of PS Anchorage Zone Using Ultra High Performance Concrete (UHPC를 적용한 PS 정착부의 응력해석)

  • Kim, Jee Sang;Choi, Yoon Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1349-1360
    • /
    • 2013
  • The post-tensioned anchorage zones of normal concrete have larger cross sections because of congested reinforcements to resist high bearing and bursting stresses. The high compressive and tensile strength of newly developed UHPC (Ultra High Performance Concrete) may reduce the cross sectional dimensions and simplify the reinforcement details, if used for post-tensioned members. The Finite Element Analysis was performed to evaluate the mechanical behavior of post-tensioned anchorage zones using UHPC without anchorage plates and confining reinforcements. The results show that the maximum bursting stresses are less than the values given in current design code without failure due to vertical cracks. The location of maximum bursting stresses were at 0.2 times of width of the models. The bursting force from FEA is less than that is obtained using simplified formular in Korean Bridge Design Code.

The Effects of Tongue Pressure Strength and Accuracy Training on Tongue Strength and Speech Function of Chronic Stroke Patients (혀 저항정확도훈련이 만성 뇌졸중 환자의 혀 근력과 구어기능에 미치는 영향)

  • Kim, Bo-Jung;Ma, Sung-Ryoung
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.11
    • /
    • pp.156-166
    • /
    • 2017
  • The purpose of this study was to evaluate the effect of the tongue's maximum resistance training program on the accuracy of the tongue training program using the Iowa Oral Performance Instrument (IOPI) and to compare the effects of tongue muscle strength and spoken language function on objective function. The experiment was diagnosed with stroke hemiplegia divided into tongue pressure strength and accuracy training therapy group and the oromotor exercise therapy group Anterior Tongue Pressure(ATP), Posterior Tongue Pressure (PTP), and Posterior Tongue Pressure (PTP) were measured before and after the intervention to evaluate changes in tongue strength and verbal ability. Maximum Phonation Time (MPT). The results of this study are as follows. There was no significant difference in tongue strength and verbal function between training group and oral facial exercise group. There was no significant difference between tongue strength training and oral facial exercise group. Therefore, it was shown that the tongue pressure strength and accuracy training therapy group was not effective to improve tongue muscle strength and spoken language ability than the oromotor exercise therapy group.

A Study on Chloride Binding Capacity of Various Blended Concretes at Early Age (초기재령에서 각종 혼합콘크리트의 염소이온 고정화능력에 관한 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.133-142
    • /
    • 2008
  • This paper studies the early-aged chloride binding capacity of various blended concretes including OPC(ordinary Portland cement), PFA(pulversied fly ash), GGBFS(ground granulated blast furnace slag) and SF(silica fume) cement paste. Cement pastes with 0.4 of a free water/binder ratio were cast with chloride admixed in mixing water, which ranged from 0.1 to 3.0% by weight of cement and different replacement ratios for the PFA, GGBFS and SF were used. The content of chloride in each paste was measured using water extraction method after 7 days curing. It was found that the chloride binding capacity strongly depends on binder type, replacement ratio and total chloride content. An increase in total chloride results in a decrease in the chloride binding, because of the restriction of the binding capacity of cement matrix. For the pastes containing maximum level of PFA(30%) and GGBFS(60%) replacement in this study, the chloride binding capacity was lower than those of OPC paste, and an increase in SF resulted in decreased chloride binding, which are ascribed to a latent hydration of pozzolanic materials and a fall in the pH of the pore solution, respectively. The chloride binding capacity at 7 days shows that the order of the resistance to chloride-induced corrosion is 30%PFA > 10%SF > 60%GGBFS > OPC, when chlorides are internally intruded in concrete. In addition, it is found that the binding behaviour of all binders are well described by both the Langmuir and Freundlich isotherms.

Compression Test for Prefabricated Composite Columns Using High-Strength Steel Angles (고강도 앵글을 적용한 선조립 합성기둥의 압축 실험)

  • Hwang, Hyeon-Jong;Eom, Tae-Sung;Park, Hong-Gun;Lee, Chang-Nam;Kim, Hyoung-Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.361-369
    • /
    • 2012
  • In this study, prefabricated composite columns using high-strength angles (PSRC composite column) was studied. Concentric axial loading tests were performed for 2/3 scale PSRC specimens and an conventional SRC specimen with H-steel at the center of the cross-section. The test parameters were the steel ratio of angles and the spacing of lateral re-bars. The test results showed that by placing the angles at the corners of the cross-section for confinement with provided for the core concrete, the PSRC column specimens exhibited greater load-carrying capacity and deformation capacity than those of the conventional SRC column. The axial load-carrying capacity of the PSRC columns was greater than the prediction by KBC 2009. Using existing stress-strain relationship of confined concrete, the axial load-deformation relationship of the specimens were predicted. The numerical predictions correlated well with the test results in terms of initial stiffness, load-carrying capacity, and post-peak strength- and stiffness-degradations.

Simulation for characteristics of various type SFCLs (유형별 초전도 한류기의 특성에 대한 시뮬레이션)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Kim, Sang-Joon;Han, Byoung-Sung
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.338-342
    • /
    • 1999
  • We simulated the current limiting characteristics of resistive and inductive SFCLs with 100 ${\omega}$ of impedances for a single and double line-to-ground faults in the 154 kV grid between two substations nearby Seoul. The transient current at the faults includes not. only high AC current up to 44 kA but also significant DC component as high as 4 kA. The DC current is greater and lasts longer for the double line-to-ground fault than for the single line-to-ground fault. The inductive SFCL limited the fault current more effectively than the resistive one. The DC component, however, was greater and diminishes slower for the inductive SFCL than for the resistive one.

  • PDF

Effect of Seismic Design Details in Reinforced Concrete Beams on Blast-Resistance Performance (철근콘크리트 보의 내진 설계 상세가 폭발 저항 성능에 미치는 영향)

  • Kim, Kuk-Jae;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.427-434
    • /
    • 2017
  • Recently, awareness of the public about the explosion damage has increased due to the increased risk of terrorism. The criteria for blast-resistance design is not sufficient in Korea, it is necessary to develop blast-resistance design for the stability and safety of building by static analysis of current blast-resistance design. In addition, as the increase of earthquake occurrence necessitates the seismic design, it is studied to judge the blast-resistance performance of members applying seismic design without blast-resistance design. Currently, the general analysis of blast load is to refer to UFC 3-340-02 manual. Blast-resistance performance was studied by applying characteristics of blast load through UFC 3-340-02 manual, beam converted into equivalent SDOF System. It is proved that blast-resistance performance is improved when seismic detail is applied considering the maximum deflection of normal, intermediate, and special moment frames.

Effects of Different Performance Sequences of Aerobic and Resistance Exercises for 10 Weeks on Body Composition, Physical Function and Hormones in Males aged 20s (10주간 유산소와 저항성 운동의 다른 수행 순서에 따른 20대 남성의 신체조성, 신체기능과 호르몬에 미치는 영향)

  • Kim, Daeyeol;Jeong, Jaekwan;Cho, Sungchae;Kuk, Doohong;Park, Hyeok;Lee, Hayan;Hong, Goeun;Hwang, Yeonhee;Kim, Donghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.446-455
    • /
    • 2018
  • This study examined the effects of different performance sequences of aerobic and strength exercises for 10 weeks on the body composition, physical function, and hormones in males aged in their 20s. A total of 30 subjects (N=30) were assigned randomly to either aerobic and resistance exercise (n=10, A+R), resistance and aerobic exercise (n=10, R+A), or a control group (n=10, CON). The different order of aerobic (HRmax 50-80%, 30 min) and resistance (50-80% 1RM, 30 min) exercises for 10 weeks was consisted of 3 times per week and 80 minutes per session. The body composition, physical function, and hormones were measured before and after the training period. The lean body mass (p=.015) was increased and the fat mass (p=.042) and % body fat (p=.007) in the A+R were decreased. The skeletal muscle mass (p=.001) in the R+A was increased and % body fat was decreased (p=.003). The weight (p=.03) and % body fat (p=.039) in the CON were increased. The aerobic capacity (p=.011) and muscular endurance (p=.001) in the A+R group were improved. The muscular endurance (p=.0016) in the R+A was improved. The epinephrine (p=.048), norepinephrine (p=.013), and cortisol (p=.045) levels in the A+R group were increased. The epinephrine (p=.046) level in the R+A group was increased. The insulin (p=.007) level increased in the CON group. In conclusion, both A+R and R+A groups produced superior results to the CON group but the A+R group was slightly more efficient than the R+A group.

The Characteristics of Structural Behavior of Temporary Bridge Using Continuous Cross Beam (일체형 가로보를 이용한 임시교량의 구조적 거동특성)

  • Joo, Hyung-Joong;Lee, Young-Geun;Lee, Dong-Hyuk;Yoon, Soon-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.559-569
    • /
    • 2012
  • Cross-beam in the existing temporary bridge system is usually installed to prevent the lateral-torsional buckling of girders and to promote the construction efficiency. However, most of this cross-beams are connected to the girder web by bolts, and therefore, gravitational load resisting capacity of the cross-beams are negligibly small. In recent years, new temporary bridge system, in which the cross-beams and girders are connected to resist the external loads as a unit, was developed. In this paper, we present the experimental and analytical study results pertaining to the structural behavior and load carrying capacity of new temporary bridge system. From the results of study, it was found that the continuous cross-beam increased the flexural rigidity and reduced the maximum flexural stress in the girder. In addition, it was also found that the new temporary bridge system developed is more appropriate for the application in the long-span temporary bridge.

Modeling and Parametric Studies on Moment-Curvature Relation of a Reinforced Concrete Column Subject In Axial-toad and Bi-Axil Moment (축하중과 이축모멘트를 받는 철근콘크리트 기둥의 모멘트-곡률에 관한 모델링 및 변수고찰)

  • 이차돈;최기봉;차준실;김성진
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.677-688
    • /
    • 2002
  • A analytical model is developed which can simulate a complete inelastic biaxial moment-curvature relations of a reinforced concrete column. The model can simulate sudden drop in moment capacity after peak moment and due to spalling of cover concrete. Parametric studies are performed examine the effects of constituent material properties as well as topological arrangement of reinforcements on moment-curvature relations and P-M interaction curve. It has been analytically observed that ductility of a reinforced concrete column is influenced mostly by magnitude of the axial load and spacings or the volume of lateral reinforcements. Compared to ACI P-M interaction curve, overall increase about 10% in square root of sum of squares of axial force and moment, and about 20% in peak load are observed for the columns reinforced according to ACI seismic design code.