• Title/Summary/Keyword: 최대수평변위

Search Result 213, Processing Time 0.023 seconds

The Behavior of Sheet Piling Walls supported by Anchors in Soft Ground (연약지반에 설치된 앵커지지 강널말뚝 흙막이벽의 거동)

  • 홍원표;송영석;김동욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.65-74
    • /
    • 2004
  • Based on the field measuring data obtained from seven excavation sections in Inchon International Airport Project, the horizontal displacement of sheet piling walls supported by anchors and the lateral earth pressure acting on sheet piling walls was investigated in soft ground. The proposed diagram of lateral earth pressure is a rectangular form, and the maximum earth pressure corresponds to $0.6\gamma H$. The maximum earth pressure is similar to the empirical earth pressure proposed by NAVFAC(1982). The quantitative safe criterion of sheet piling walls with struts is established from the relationships between increasing velocity of maximum horizontal displacement and stability number in excavated ground. If the velocity of maximum horizontal displacement shows lower than 1mm per day, the sheet piling walls exist under stable state. When the velocity of maximum horizontal displacement becomes more than 1mm and less than 2mm per day, excavation works should be observed with caution. Also, when the velocity of maximum horizontal displacement becomes more than 2mm per day, appropriate remediations and reinforcements are applied to sheet piling walls.

Seismic Response Characteristics of the Bridges with Motion-Limiting Devices (이동제한장치가 있는 교량의 지진응답특성)

  • 이지훈;전귀현
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.331-340
    • /
    • 1998
  • 본 연구에서는 이동제한장치가 있는 연속교의 지진응답특성을 고찰하였다. 일점고정연속교에 있어서 이동제한장치는 교각이 탄성거동을 하는 경우 교축방법 수평력 분산기능이 있으며 교각하부에 소성힌지가 발생하거나 내진분리베어링이 있는 경우에는 최대변위 및 비탄성거동에 따른 잔류변위제한에 매우 효과적이다. 상부구조와 이동제한장치의 충돌시 발생하는 충격력은 완충재의 사용으로 상당히 감소시킬 수 있다. 이동제한장치의 설치위치 및 이격거리는 이동제한장치가 설치될 하부구조의 강성 및 강도와 온도변화, 급제동력, 작은 지진발생시 충돌여부, 신축이음장치유간 등을 고려하여 결정되어야 한다.

  • PDF

A Study on the Behavior of Multi-tiered Reinforced Earth Retaining Wall (다단식 보강토 옹벽의 거동특성 연구)

  • 유한규;한석준;박언상
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.3
    • /
    • pp.83-94
    • /
    • 2001
  • 본 연구에서는 상.하단으로 구분된 2개의 동일한 보강토옹벽에 대해서 상호 이격거리에 따른 수치해석을 수행하여 전면벽체의 수평변위, 전면벽체 배면의 수평토압, 보강토체 배면의 수평토압 그리고 보강재의 최대인장력 분포 및 크기변화 양상 등 다단식 보강토옹벽의 거동을 살펴보았다. 또한, 하단 옹벽에 증가되는 응력을 산정하고자 중첩의 원리를 적용한 2:1 응력분포법을 제시하였다. 수치해석 결과 이격거리가 증가함에 따라 상단옹벽이 하단옹벽에 미치는 영향이 감소하였으며 하단 옹벽 높이의 두배 이상 이격시, 상호 거동은 독립옹벽으로 거동하였다. 하단 옹벽내 응력 산정방법에 있어서 NCMA의 방법이 가장 보수적인 결과를 보였으며 본 연구에서 제시한 2:1 응력분포법중 주동파괴면을 고려하지 않은 방법이 수치해석 결과와 가장 유사하게 나타났다.

  • PDF

An Experimental Study on Characteristics of Earth Pressure Distribution for Segmental Reinforced Earth Wall (블록형 보강토 옹벽의 토압 특성 연구)

  • 김진만;조삼덕;이정재;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.83-90
    • /
    • 2004
  • Retaining walls with reinforced earth have been constructed around the world. The use of reinforced earth is a recent development in the design and construction of earth-retaining structure. It is believed that reinforced retaining wall has some advantages which make construction quite simple basically. It wilt take short construction time relatively, comparing, fur example with reinforced-concrete retaining wall. In addition, low price and easy construction will be good attractive points in practical point of view. In this study, five field-tests monitoring data for lateral pressures on geogrid-reinforced retaining wall have been compiled and evaluated. Based on field-tests it is found that horizontal displacements of the facing was measured to be about 0.19∼0.76% and that the maximum tensile strains of reinforcement was evaluated to be about 0.66∼1.98%. The maximum tensile strains, measured from each site, do not reach 5% of the practical allowable strain of the geogrid. And also it is found that the lateral pressure distributions of reinforced-earth retaining wall are close to a trapezoid shape like a flexible retaining wall system, instead of a theoretical triangular shape.

Effects of Pile Diameter on the Lateral Behavior of Offshore Pile in the Southwestern Area of Korea (서남해안 해상풍력단지 말뚝의 직경에 따른 횡방향 거동)

  • Lee, In;Choi, Younggyun;Kim, Honglak;Kwon, Osoon;Youn, Heejung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.5
    • /
    • pp.23-32
    • /
    • 2013
  • This paper presents the effect of pile diameter on the lateral behavior of offshore pile for wind turbine. The material parameters of the soils were estimated through SPT on the Southwestern offshore area in Korea, where the first wind farm is planned. The FDM software, FLAC3D, and LPile were adopted to derive the load-displacement curve, p-y curve, and maximum bending moment at a specified displacement. It was found that the results from softwares significantly differ and the LPile could overestimate the allowable capacity. The maximum bending moment along the pile with 2m diameter could be as large as four times the bending moment with 1m diameter. Similar trend was observed for the allowable lateral capacity.

Development of a System Predicting Maximum Displacements of Earth Retaining Walls at Various Excavation Stages Using Artificial Neural Network (인공신경망을 이용한 굴착단계별 흙막이벽체의 최대변위 예측시스템 개발)

  • 김홍택;박성원;권영호;김진홍
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.83-97
    • /
    • 2000
  • In the present study, artificial neural network based on the multi-layer perceptron is used and an optimum model is chosen through the process of efficiency evaluation in order to develop a system predicting maximum displacements of the earth retaining walls at various excavation stages. By analyzing the measured field data collected at various urban excavation sites in Korea, factors influencing on the behaviors of the excavation wall are examined. Among the measured data collected, reliable data are further selected on the basis of the performance ratio and are used as a data base. Data-based measurements are also utilized for both teaming and verifying the artificial neural network model. The learning is carried out by using the back-propagation algorithm based on the steepest descent method. Finally, to verify a validity of the formulated artificial neural network system, both the magnitude and the occurring position of the maximum horizontal displacement are predicted and compared with measured data at real excavation sites not included in the teaming process.

  • PDF

An Experimental Study on Behavior Characteristics of Geosynthetics Reinforced Retaining Earth Wall (보강압성토 옹벽의 거동 특성에 관한 실험적 연구)

  • Noh, Taekil;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.29-37
    • /
    • 2012
  • This study is to find out the characteristics of the behavior of Geosyntehtic Reinforced Retaining Earth Wall(GRREW) through the laboratory experiment with the reduced-scale model, and to verify the effect of reinforcement by materials of GRREW. The loading tests after combining nonwoven geosynthetic, re-bar mesh nets and drainage blocks respectively among the components of the GRREW were performed in three cases of their slopes. In the cases of the behavior analysis including all of the components of the GRREW, the maximum horizontal displacement was generated 8.4mm at the location of 0.57H in the slope of 1:0.3; 3.8mm at the location of 0.57H in the slope of 1:0.6; 3.6mm at the location of 0.86H in the slope of 1:1.0. On average, the horizontal displacements of the GRREW were reduced by 83.8% against those of the original slopes. Lastly, seepage analysis and slope stability analysis were performed by modelling section of field, to confirm the effect of installation of drainage block in GRREW. We can confirm to compare increasing the slope safe factor and decreasing ground water in accordance with drainage blocks.

Centrifuge Modeling on Lateral Flow of Soft Soils and Displacement of Bridge Abutment on the Composite Ground (복합지반상 교대변위 및 지반 측방유동에 관한 원심모델링)

  • Heo, Yol;Park, Sunghun;Yun, Seokhyun;Kwon, Seonuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.39-46
    • /
    • 2007
  • In this study, the centrifuge tests were performed to investigate the lateral flow behavior and stability of the ground improved by SCP. The centrifuge tests were fulfilled in the case of the back of abutment filled by EPS (case 1) and soil (case 2), and the potentiometer was installed on the abutment and embankment to measure the vertical and horizontal displacement at the top of abutment. As a result, the vertical displacement measured at the back of abutment was maximum 2.1 m, which was about 12% if compared with the height of embankment. In the case of the back of abutment filled by soil, the vertical and horizontal displacement measured at the top of abutment was 10 cm and 1.1 m, respectively, which exceeded the allowable horizontal displacement. On the other hand, in the case of the back of abutment filled by EPS, the vertical displacement of abutment did nor occur and the horizontal displacement was 1.4 cm. Therefore, the effect of SCP improvement with EPS method adopted to prevent the lateral flow and assure the stability of embankment on the soft ground was far superior.

  • PDF

Pillar Width of Twin Tunnels in Horizontal Jointed Rock Using Large Scale Model Tests (대형모형실험을 통한 수평 절리암반에서의 병설터널 이격거리)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.352-359
    • /
    • 2010
  • Stability of twin tunnels depends on the pillar width and the ground condition. In this study, large scale model tests were conducted for investigating the influence of the pillar width of twin tunnels on their behavior in the regular horizontal jointed rock mass. Jointed rocks was composed of concrete blocks. Pillar width of twin tunnels varied in 0.29D, 0.59D, 0.88D and 1.18D, where D is the tunnel width. During the test, pillar stress, lining stress, tunnel distortion, and ground displacement were measured. Lateral earth pressure coefficient was kept in a constant value 1.0. As a result, it was found that the pillar stress and the displacement of the ground and tunnel were increased by decreasing pillar width. The maximum displacement rate was measured just after the upper excavation in each construction sequence. And the maximum influence position was the right shoulder of the preceeding tunnel at the pillar side. It was also found that for the stability assessment the inner displacement was more critical than the crown displacement. The influence zone was formed at the pillar width 0.59D~0.88D that was smaller than 0.8D~2.0D, which was proposed by experience for a good ground condition. And it would be concluded that horizontal joints could also influence on the stability of the twin tunnels.

Centrifuge Model Experiments on Behavior of Reinforced Earth Retaining Walls A Study due to Variation of Reinforcements (보강토 옹벽의 거동에 대한 원심모형실험 -보강재 변화에 의한 연구)

  • Heo, Yol;Ahn, Sang-Ro;Lee, Cheo-Keun
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.45-54
    • /
    • 1993
  • In this paper, the behaviors of reinforced earth retaining walls according to material properties of reinforcement were performed through the centrifuge model tests. Skin element was used flexible aluminum plate in the process of tests. And reinforcements were used with aluminum foil strips and non -woven polyester sheets. As a result of it, model retaining wall utilizing non-woven polyester sheets than aluminum foil strips was supported at high stress level, and maximum horizontal displacement value of skin element was 0.6H height at model walls. In the other hand, coefficient relation diagram for evaluation of horizontal displacement according to skin element location was proposed using test results.

  • PDF