• Title/Summary/Keyword: 초음파 진동 가공

Search Result 65, Processing Time 0.02 seconds

Study of Optimal Machining Conditions of Ultrasonic Machining By Taguchi's Method (다구찌 방법을 이용한 초음파 가공의 최적가공조건에 관한 연구)

  • Liu, Jun Wei;Jin, Jian;Ko, Tae Jo;Baek, Dae Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.213-218
    • /
    • 2013
  • Ultrasonic machining (USM) is a new method used in metal cutting. This process does not involve heating or any electrochemical effects, causes low surface damage, has small residual stress, and does not rely on the conductivity of the workpiece. These characteristics are suitable for the machining of brittle materials such as glass or ceramics. However, the use of USM for brittle materials generates cracks on the workpiece. Therefore, in this study, Taguchi's method was used to optimize the processing conditions of micro holes drilled in glass and ceramics. This method was used to successfully reduce the number of cracks at the entrance and the exit of the micro holes.

Glass Drilling using Laser-induced Backside Wet Etching with Ultrasonic Vibration (초음파 진동과 레이저 후면 에칭을 통한 유리 구멍 가공)

  • Kim, Hye Mi;Park, Min Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2014
  • Laser beam machining has been known as efficient for glass micromachining. It is usually used the ultra-short pulsed laser which is time-consuming and uneconomic process. In order to use economic and powerful long pulsed laser, indirect processing called laser-induced backside wet etching (LIBWE) is good alternative method. In this paper, micromachining of glass using Nd:YAG laser with nanosecond pulsed beam has been attempted. In order to improve shape accuracy, combined processing with magnetic stirrer has been widely used. Magnetic stirrer acts to circulate the solution and remove the bubble but it is not suitable for deep hole machining. To get better effect, ultrasonic vibration was applied for improving shape accuracy.

The Effects of Ultrasonic Vibration on Surface Finish in Nano-second Laser Machining (나노초 레이저 가공에서 초음파 진동이 가공표면에 미치는 영향)

  • Kang, Bong-Chul;Kim, Gun-Woo;Cho, Sung-Hak;Park, Jong-Kweon;Yang, Min-Yang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.402-406
    • /
    • 2010
  • Conventionally, the machined surface roughness in nano-second(ns) laser machining is damaged and rough due to thermal effects. To obtain the improved surface finish, the ultrasonic vibration is applied to ns-laser machining. The ultrasonic vibration jig is developed to apply the ultrasonic high precision motion to workpieces. And then the ns-laser machining is conducted to compare the effects of the ultrasonic vibration. The results show that the surface roughness with ultrasonic vibration is smoother than that without the vibration. The phenomenon could be explained as enhancement of heat transfer by ultrasonic vibration.

Machining characteristics on ultrasonic vibration assisted micro-electrical discharge machining of carbon-nanotube reinforced conductive Al2O3 composite (전도성을 가지는 탄소나노튜브강화 알루미나복합소재의 마이크로방전가공에서 초음파진동 부가에 의한 가공특성)

  • Kang, Myung-Chang;Tak, Hyun-Seok;Lee, Chang-Hoon;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.119-126
    • /
    • 2014
  • Micro-holes of conductive ceramic are required in micro structures. Micro-electrical discharge machining (Micro-EDM) is an effective machining method since EDM is as process for shaping hard metals and complex-shaped holes by spark erosion in all kinds of electro-conductive materials. However, as the depth of micro hole increases, the machining condition becomes more unstable due to inefficient removal of debris between the electrode and the workpiece. In this paper, micro-EDM was performed to evaluate machining characteristic such as electrode wear, machining time, taper angle, radial clearance with varying voltage and ultrasonic vibration on 10 vol.% Carbon-nanotube reinforced conductive $Al_2O_3$ composite fabricated by spark plasma sintering in previous research.

Effects of Ultrasonic Vibration on Machined Surface of Aluminium 6061 in Endmill Cutting Process (Al6061의 엔드밀 절삭가공에서 초음파 진동이 가공 표면에 미치는 영향)

  • Jung, Myung-Won;Kwak, Tae-Soo;Kim, Myeong-Kyu;Kim, Geon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.96-102
    • /
    • 2014
  • This study focused on the effects of ultrasonic vibration on a machined surface of Al6061 material in the endmill cutting process. It is known that ultrasonic vibration greatly increases the efficiency of the machining process when cutting or grinding. An ultrasonic vibration table was developed for application to ultrasonic vibration endmill machining experiments.Inthisstudy,the surface roughness and actual depth of the cut measured confirm the effects of ultrasonic vibration. As a result of the experiments, the actual depth of the cut increased during endmill machining when using ultrasonic vibration. The surface roughness was improved with increases in the amplitude of the vibration and the depth of the cut.

Micro Ultrasonic Elliptical Vibration Cutting (II) Ultrasonic Micro V-grooving Using Elliptical Vibration Cutting (미세 초음파 타원궤적 진동절삭 (II) 타원진동 절삭운동을 이용한 미세 홈 초음파 가공)

  • Kim Gi Dae;Loh Byoung-Gook;Hwang Kyung-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.198-204
    • /
    • 2005
  • For precise micro V-grooving, ultrasonic elliptical vibration cutting (UEVC) is proposed using two parallel piezoelectric actuators, which are energized by sinusoidal voltages with a phase difference of 90 degrees. Experimental setup is composed of stacked PZT actuators, a single crystal diamond cutting tool, and a precision motorized xyz stage. It is found that the chip formed in the process of UEVC is discontinuous because of the periodic contacts and non-contacts occurring between the tool and workpiece. It is experimentally observed that the cutting force in the process of UEVC significantly reduces compared to the ordinary non-vibration cutting. In addition, the creation of burr during UEVC is significantly suppressed, which is attributable to the decrease in the specific cutting energy.

Numerical Analysis of Piezoelectric Element for Ultrasonic Joinning (초음파 접합용 진동자 냉각에 관한 수치해석)

  • Park, Sang-Jun;Lee, Young-Lim
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.398-401
    • /
    • 2011
  • 초음파의 응용분야에는 음파 성질을 이용한 정보 측정분야와 에너지를 이용한 용접 및 가공 등을 들수 있다. 초음파 용접의 경우 저항용접이나 용융 용접을 적용할 수 없는 재료의 접합에 이용되는데 이는 모재를 음극간에 놓고 압입하면서 초음파를 발신하여 그 진동을 이용하는 용접방법이다. 압전소자의 경우 피에조 물질을 사용하는데 일반적으로 $150^{\circ}C$이상에서 분자구조의 변형을 일으켜 제 역할을 못하게 된다. 본 연구에서는 압전소자와 공구혼의 온도를 최적으로 유지하기 위하여 추가적인 공기 유로와 방열핀을 설계하여 이것이 방열성능에 미치는 영향에 대해 고찰하였다.

  • PDF

Development of capacitive Micromachined Ultrasonic Transducer (III) - Performance Test (미세가공 정전용량형 초음파 탐촉자 개발(III) - 탐촉자 성능평가)

  • Kim, Ki-Bok;Ahn, Bong-Young;Park, Hae-Won;Kim, Young-Joo;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.6
    • /
    • pp.581-589
    • /
    • 2004
  • In this study, the capacitive micromachined ultrasonic transducer(cMUT) was developed based on the previous research results. The cross sectional image of the developed cMUT was characterized. To measure the membrane displacement of the cMUT, the Michelson phase modulation fiber interferometer was constructed. The measured membrane displacement was in good agreement with the result of the finite element analysis. To estimate the ultrasonic wave generated by the cMUT, an ultrasonic system including a pulser, receiver and charge amplifier was used. The cMUT developed in this study shows a good performance and hence will be widely used in the non-contact ultrasonic applications.

A study on micro grooving characteristics of planar lightwave circuit and glass using ultrasonic vibration cutting (초음파 진동절삭을 이용한 평면 광도파로와 유리의 미세 홈 가공특성에 관한 연구)

  • 이준석;김병국;정융호;이득우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.167-172
    • /
    • 2002
  • Recent years, optical components'are widely used in optical communication industry for high speed and mass storage data processing. Micro grooving of planar lightwave circuit and glass, those are widely used in optical component, are realized by polycrystalline diamond tool with ultrasonic vibration. To know the characteristics of brittle materials cutting, ultrasonic vibration cutting tool and machining system are built for the experiment. Grooving on planar lightwave circuit and glass experiments are performed and their shape are measured by photograph with microscope. It reveals that better groove shape with low chipping of planar lightwave circuit and glass are obtained by micro grooving machining with ultrasonic vibration. These experiments are considered as a possibility to the micro grooving of optical communication components.

  • PDF