DOI QR코드

DOI QR Code

Study of Optimal Machining Conditions of Ultrasonic Machining By Taguchi's Method

다구찌 방법을 이용한 초음파 가공의 최적가공조건에 관한 연구

  • Liu, Jun Wei (Dept. of Mechanical Engineering, Yeungnam Univ.) ;
  • Jin, Jian (Dept. of Mechanical Engineering, Yeungnam Univ.) ;
  • Ko, Tae Jo (Dept. of Mechanical Engineering, Yeungnam Univ.) ;
  • Baek, Dae Kyun (Institute of Mechanical Engineering Technology, Kyungpook Nat'l Univ.)
  • 유군위 (영남대학교 기계공학과) ;
  • 김건 (영남대학교 기계공학과) ;
  • 고태조 (영남대학교 기계공학과) ;
  • 백대균 (경북대학교 기계연구소)
  • Received : 2012.07.04
  • Accepted : 2012.07.30
  • Published : 2013.02.04

Abstract

Ultrasonic machining (USM) is a new method used in metal cutting. This process does not involve heating or any electrochemical effects, causes low surface damage, has small residual stress, and does not rely on the conductivity of the workpiece. These characteristics are suitable for the machining of brittle materials such as glass or ceramics. However, the use of USM for brittle materials generates cracks on the workpiece. Therefore, in this study, Taguchi's method was used to optimize the processing conditions of micro holes drilled in glass and ceramics. This method was used to successfully reduce the number of cracks at the entrance and the exit of the micro holes.

초음파 가공(Ultrasonic Machining:USM)은 새로운 기계가공기술 분야 중의 하나이다. 초음파 가공 과정은 비열, 비화학, 그리고 비전도의 방법이기 때문에 공작물 재료의 물리적, 화학적 변화가 없다. 이러한 특성으로 인해 초음파 가공기술은 유리, 세라믹 등과 같은 취성재료의 가공에 적합하다. 그러나 단점으로는 초음파 진동을 이용하여 취성재료를 가공하는 경우 크랙이 빈번하게 발생한다. 본 논문에서는 유리와 세라믹의 미세 구멍가공에서 다구찌 방법을 이용하여 크랙발생을 최소화하는 최적의 가공조건을 얻고자 하였다. 이를 통해 공작물의 입구 및 출구에서 발생하는 크랙 현상을 감소시켰다.

Keywords

References

  1. Singh, R. and Khamba, J. S., 2006, "Ultrasonic Machining of Titanium and Its Alloys: A Review," J. of Materials Processing Technology, Vol. 173, pp. 125-135. https://doi.org/10.1016/j.jmatprotec.2005.10.027
  2. Ko, J. H., Shaw, K. C., Chua, H. K. and Lin, R. M., 2011, "Cusp Error Reduction Under High Speed Micro/Meso Scale Milling with Ultrasonic Vibration Assistance," International Journal of Precision Engineering and Manufacturing," Vol. 12, No. 1, pp. 15-20. https://doi.org/10.1007/s12541-011-0002-2
  3. Benedict, G. F., 1987, Nontraditional Manufacturing Processes, Marcel Dekker, Inc, New York, pp. 67-86 [Chapter 6].
  4. Soundararajan, V. and Radhakrishnan, V., 1986, "An Experimental Investigation on the Basic Mechanisms Involved in Ultrasonic Machining," Int. J. MTDR, Vol. 26, No. 3, pp. 307-321.
  5. Neppiras, E. A., 1956, "Report on Ultrasonic Machining," Metalworking Production, Vol. 100, pp. 1283-1288.
  6. Thoe, T. B., Aspinwall, D. K. and Wise, M. L. H., 1998, "Review on Ultrasonic Machining," Int. J. Mach. Tools Manuf., Vol. 38, No. 4, pp. 239-255. https://doi.org/10.1016/S0890-6955(97)00036-9
  7. Kainth, G.S., Nandy, A. and Singh, K., 1979, "On the Mechanics of Material Removal in Ultrasonic Machining," Int. J. Mach. Tools Manuf., Vol. 19, pp. 33-41. https://doi.org/10.1016/0020-7357(79)90019-2
  8. Li, Z. C., Jiao, Y., Deines, T. W., Pei, Z. A. and Treadwell, 2005, C., "Rotary Ultrasonic Machining of Ceramic Matrix Composites: Feasibility Study and Designed Experiments," Int. J. Mach. Tools Manuf., Vol. 45, pp. 1402-1411. https://doi.org/10.1016/j.ijmachtools.2005.01.034
  9. Li, Z. C., Cai, L., Pei, Z. J. and Treadwell, C., 2006, "Edge-Chipping Reduction in Rotary Ultrasonic Machining of Ceramics: Finite Element Analysis and Experimental Verification," Int. J. Mach. Tools Manuf., Vol. 46, pp. 1469-1477. https://doi.org/10.1016/j.ijmachtools.2005.09.002
  10. Peace, G. S., 1995, Taguchi Methods, Addison Wesley, pp. 273-337 [chapter 17].
  11. www.sonicmill.com, 2012, Sonicmill Company.

Cited by

  1. Statistical Analysis on Process Variables in Linear Roll-CMP vol.30, pp.3, 2014, https://doi.org/10.9725/kstle.2014.30.3.139
  2. Optimization of ultrasonic machining for fabricating square holes using the Taguchi methods vol.40, pp.5, 2017, https://doi.org/10.1080/02533839.2017.1326846