• Title/Summary/Keyword: 초음속 영역

Search Result 115, Processing Time 0.024 seconds

A Numerical Study of Supersonic Combustion of Gas Generator (Gas generator의 초음속 연소현상에 대한 연구)

  • Kim, Seong-Jin;Seo, Bong-Gyun;Yeom, Hyo-Won;Sung, Hong-Gye;Gil, Hyun-Yong;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.419-422
    • /
    • 2010
  • An unsteady numerical combustion analysis was performed to investigate the combustion characteristics of A Dual Combustion Ramjet(DCR) engine using a gas generator. According to a variance of the equivalence ratio of the gas generator, the flow pattern in the combustor was analyzed. A typical acoustic frequency in the combustor was observed by detail analysis of pressure fluctuation at each location of the combustor.

  • PDF

Velocity Distribution Measurements in Mach 2.0 Supersonic Nozzle using Two-Color PIV Method (Two Color PIV 기법을 이용한 마하 2.0 초음속 노즐의 속도분포 측정)

  • 안규복;임성규;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.18-25
    • /
    • 2000
  • A two-color particle image velocimetry (PIV) has been developed for measuring two dimensional velocity flowfields and applied to a Mach 2.0 supersonic nozzle. This technique is similar to a single-color PIV technique except that two different color laser beams are used to solve the directional ambiguity problem. A green-color laser sheet (532 nm: 2nd harmonic beam of YAG laser) and a red-color laser sheet (619 nm: output beam from YAG pumped Dye laser using Rhodamine 640) are employed to illuminate the seeded particles. A high resolution (3060${\times}$2036) digital color CCD camera is used to record the particle positions. This system eliminates the photographic-film processing time and subsequent digitization time as well as the complexities associated with conventional image shifting techniques for solving directional ambiguity problem. The two-color PIV also has the advantage that velocity distributions in high speed flowfields can be measured simply and accurately by varying the time interval between two different laser beams due to its high signal-to-noise ratio and thereby less requirement of panicle pair numbers for a velocity vector in one interrogation spot. The velocity distribution in the Mach 2.0 supersonic nozzle has been measured and the over-expanded shock cell structure can be predicted by the strain rate field. These results are compared and analyzed with the schlieren photograph for the velocity distributions and shock location.

  • PDF

Supersonic Multi-species Jet Interactions of Hit-to-Kill Interceptor with High Temperature Effect (고온효과를 고려한 직격 요격체 다화학종 초음속 제트 간섭)

  • Baek, Chung;Lee, Seungsoo;Huh, Jinbum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.187-194
    • /
    • 2020
  • In this study, computational analyses are carried out to investigate the interference flows and the aerodynamic characteristics of a hit-to-kill intercepter due to lateral jets at medium altitude. In addition, the analyses are performed for air and multi-species gas used in the side jet. The results indicate that the position of the barrel shock are shifted upstream and the structure of the shock wave are changed for the multi-species jet when compared to the air jet. As a result, the high pressure region with multi-species jet moves forward and the pitching moment is higher under the same flow condition. Moreover, the inclusion of high temperature effects makes drastic changes in pressure distribution. The jet width is much bigger, and the jet diffuses over wider range in medium altitude than in low altitude, because of the low density of the freestream.

Computational Analysis of the Delta Wing-Cylindrical Body Configuration Using the Three-Dimensional Patched-Grid Algorithm (3차원 patched-grid 알고리즘을 이용한 삼각 날개-원통형 동체 형상 전산 해석)

  • Park, Hyeon Don;Kim, Young Jin;Park, Soo Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.109-117
    • /
    • 2020
  • A structured grid system can be efficiently constructed by applying the patched-grid algorithm that alleviates many constraints of the conventional structured grid system. Three approaches were applied to case 4 of the EFD-CFD workshop: delta wing-cylindrical body shape to solve the existing grid generation problems and verify the results by comparing them with experimental data. Surface pressure distributions slightly differed from the experimental data at high angles of attack. The slope variation of the pitching moment with Mach number is analyzed and the variation can be explained with the tuck under phenomenon. In the supersonic region, the bow shock waves in front of the shape expand the region generating lift up to the rear of the configuration. Also, the tendency of the pitching moment with both Mach number and angle of attack was analyzed by comparing the positions of the center of pressure and the center of gravity.

Characteristic Study on Effect of the Vent Mixer to Supersonic Fuel-Air Mixing with Stereoscopic-PIV Method (3차원 PIV 기법을 사용한 벤트혼합기가 초음속 연료-공기 혼합에 미치는 특성 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck;Choi, Byung-Il;Kouchi, Toshinori;Masuya, Goro
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • Vent mixer can provide main flow directly into a recirculation region downstream of the mixer to enhance fuel-air mixing efficiency. Based on experimental results of three-dimensional velocity, vorticity and turbulent kinetic energy obtained by a stereoscopic PIV method, the performance of the vent mixer was compared with that of the step mixer which was used as a basic model. Thick shear layers of the vent mixer induced the increase of the penetration height. The turbulent kinetic energy mainly distributed along a boundary layer between the main flow and the jet plume. This turbulent field activates mass transfer in a mixing region, leading to the mixing enhancement.

Study of the Incremental Dynamic Inversion Control to Prevent the Over-G in the Transonic Flight Region (천음속 비행영역에서 하중제한 초과 방지를 위한 증분형 동적 모델역변환 제어 연구)

  • Jin, Tae-beom;Kim, Chong-sup;Koh, Gi-Oak;Kim, Byoung-Soo
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.33-42
    • /
    • 2021
  • Modern aircraft fighters improve the maneuverability and performance with the RSS (Relaxed Static Stability) concept and therefore these aircrafts are susceptible to abrupt pitch-up in the transonic and moderate Angle-of-Attack (AoA) flight region where the shock wave is formed and the mean aerodynamic center is moved forward during deceleration. Also, the modeling of the aircraft flying in this flight region is very difficult due to complex flow filed and unpredictable dynamic characteristics and the model-based control design technique does not fully cover this problem. In this paper, we analyzed the performance of the TPMC (Transonic Pitching Moment Compensation) control based on the model-based IDI (Incremental Dynamic Inversion) and the Hybrid IDI based on the model and sensor based IDI during the SDT (Slow Down Turn) in transonic region. As the result, the Hybrid IDI had quicker response and the same maximum g suppression performance and provided the predictable flying qualities compared to the TPMC control. The Hybrid IDI improved the performance of the Over-G protection controller in the transonic and moderate AoA region

Preliminary Design of Movable Ramjet Intake (가변 초음속 흡입구 기본설계)

  • Lee, Kyung-Jae;Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.207-210
    • /
    • 2008
  • In this study, one type of ramjet intake were designed for the flight condition of Mach number 4 and numerical analysis was performed. In order to widen the flight envelope range (Mach number $2{\sim}6$), movable intake concept was applied. The central body was designed so that the capture area ratio which is one of most important factors of ramjet intake design could be adjusted. And various types of cowl and movable insert part of shell were designed in order to control throat area which could increase total pressure recovery. The numerical results showed that the designed ramjet intake could be applied in various flights Mach number.

  • PDF

Thermal Barrier Efficiency and Endurance of Ni-Cr Coating in Liquid Rocket Engine Combustor (액체로켓엔진 연소기에 적용된 니켈-크롬 코팅의 열차폐 효율과 내구성)

  • Lee, Kwang-Jin;Lim, Byoung-Jik;Kim, Jong-Gyu;Han, Yeoung-Min;Choi, Hwan-Seok
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.138-143
    • /
    • 2009
  • Thermal barrier efficiency and endurance of coatings in liquid rocket engine combustor were evaluated for air plasma spray coating and electro/electroless plating. The result of firing tests has revealed occasional occurrence of local delamination of $ZrO_2$, NiCrAlY coating obtained by the method of air plasma spray in the region of supersonic flow and it necessitated a new coating method as a substitution. It was found that Ni-Cr coating by means of electro/electroless plating can substitute $ZrO_2$, NiCrAlY coatings of air plasma spray in terms of thermal barrier efficiency and endurance.

  • PDF

A Study on Impact of an Adjacent Structure by a Rocket Plume (유도탄 화염이 인접 구조물에 미치는 영향 연구)

  • Yang, Young-Rok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.488-494
    • /
    • 2014
  • Rocket Plumes can cause serious damage to launch vehicles and adjacent structures. This paper describes the impact of an adjacent structure by a rocket plume. Each parameter related with dynamic behavior of a missile is modeled with probabilistic distributions of variables. Flyout analyses of initial behavior of a vertically launched missile are performed using Monte-Carlo simulation and flow-motion analyses were conducted by using CFD. In this way, when a missile is fired by a ship, the impact of an adjacent structure by a rocket plume was analyzed.

Papers : The Speed of Sound for Reacting Gases and Effects of the Speed of Sound to Accuracy (논문 : 반응기체 해석을 위한 음속 및 음속에 따른 해의 정확성 연구)

  • Kim,Gyu-Hong;Lee,Gyeong-Tae;Kim,Jong-Am;No,O-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.9-19
    • /
    • 2002
  • Accuracy of AUSM-type schemes is closely related to a speed of in a cell-interface. Effect to accuracy by a speed of sound invastigated in the region of subsonic, transonic, and supersonic flows repectively. The advantage of the speed of sound in AUSMPW+ are summerized as the improvement of accuracy in capturing an oblique shock and the removal of an expansion shock to satisfy the entropy condition. They are proven by mathmatics and numerical result. Moreover AUSMPW+ is extended to a real gas flow and the speed of sound for equilibrium and nonequilibrium gas which could give exact soultions in an oblique shock is proposed.