DOI QR코드

DOI QR Code

Study of the Incremental Dynamic Inversion Control to Prevent the Over-G in the Transonic Flight Region

천음속 비행영역에서 하중제한 초과 방지를 위한 증분형 동적 모델역변환 제어 연구

  • Received : 2021.03.04
  • Accepted : 2021.06.11
  • Published : 2021.10.31

Abstract

Modern aircraft fighters improve the maneuverability and performance with the RSS (Relaxed Static Stability) concept and therefore these aircrafts are susceptible to abrupt pitch-up in the transonic and moderate Angle-of-Attack (AoA) flight region where the shock wave is formed and the mean aerodynamic center is moved forward during deceleration. Also, the modeling of the aircraft flying in this flight region is very difficult due to complex flow filed and unpredictable dynamic characteristics and the model-based control design technique does not fully cover this problem. In this paper, we analyzed the performance of the TPMC (Transonic Pitching Moment Compensation) control based on the model-based IDI (Incremental Dynamic Inversion) and the Hybrid IDI based on the model and sensor based IDI during the SDT (Slow Down Turn) in transonic region. As the result, the Hybrid IDI had quicker response and the same maximum g suppression performance and provided the predictable flying qualities compared to the TPMC control. The Hybrid IDI improved the performance of the Over-G protection controller in the transonic and moderate AoA region

현대 전투기는 정안정성 완화 개념을 적용하여 기동성과 성능을 향상시키는데, 천음속 비행영역에서는 충격파 형성과 더불어 감속기동 중 발생하는 공력중심 전방이동 현상에 의해 갑작스런 기수 들림이 발생하는 경향을 갖는다. 또한 천음속 중간 받음각 비행영역은 항공기 모델링이 어려워 모델 기반의 제어 방식은 이 문제를 해결하는데 한계를 갖는다. 이번 논문에서는 초음속 경전투기 모델을 이용하여 천음속 영역에서 감속선회 기동 중 모델 기반 증분형 동적 모델역변환 방식의 천음속 피칭모멘트 보상 제어(TPMC)와 모델과 센서를 기반으로 하는 Hybrid 증분형 동적모델 역변환(IDI) 제어의 성능을 분석하였다. 분석 결과, Hybrid 증분형 동적모델 역변환 제어는 천음속 피칭모멘트 보상 제어에 비해 빠른 초기 반응과 동등한 최대 수직가속도 제한 성능을 가지면서 조종사가 예측 가능한 비행성을 제공하여 천음속 중간 받음각 비행영역에서 하중제한 초과 방지 제어기의 성능을 크게 개선하였다.

Keywords

References

  1. J. Emfinger and J. Flannigan, 1972, "Fly By Wire technology", American Institute of Aeronautics and Astronautics Guidance and Control Conference, Stanford, California, 14-16 Aug. 1972.
  2. J. M. Schuler, 1983, "New flying qualities criteria for relaxed static longitudinal stability", American Institute of Aeronautics and Astronautics Atmospheric Flight Mechanics Conference, 15-17 Aug. 1983.
  3. M. Hanel, W. Neuhuber, R. Osterhuber, G. Hofinger and M. Barrio, 2004, "Asymmetric stiffness pitch control - transonic pitch-Up mitigation for the EF2000", AIAA Guidance, Navigation, and Control Conference and Exhibit, 16-19 August 2004.
  4. Jeffrey J Harris, James Richard Standard, 2018, "F-35 Flight control law design. Development and verification", 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, Georgia
  5. H. G. Bae, D. Y. Cho, J. S. Park, 2007, "Flight load analysis based on T-50 aircraft developing experience", Cheong Mun Gak.
  6. C. S. Kim, 2006, "A study on the sensitivity analysis of the aircraft longitudinal center-of-gravity movements", Journal of The Korean Society Aeronautical and Space Science, Vol. 34, No. 6, pp.83 ~ 91. https://doi.org/10.5139/JKSAS.2006.34.6.083
  7. C. S. Kim, J. M. Sung, I. S. Yang, M. S. Kang and I, J. Cho, 2017, "Nonlinear dynamic inversion control law development of high performance fighter aircraft", Journal of Institute of Control, Robotics and System, Vol. 23, No. 9, pp.786-802. https://doi.org/10.5302/J.ICROS.2017.17.0075
  8. C. S.Kim, I. S. Yang, G. O. Koh, B. S. Kim, 2018, "A study on longitudinal control law design and flying quality parameter optimization for highly maneuverable fighter", Journal of Institute of Control, Robotics and System, Vol. 24, No. 8, pp.767-776. https://doi.org/10.5302/j.icros.2018.0067
  9. C. S.Kim, I. S. Yang, G. O. Koh, B. S. Kim, 2018, "Development of the model-/sensor-based nonlinear dynamic inversion control technique for highly maneuverable fighter", Journal of Institute of Control, Robotics and System, Vol. 24, No. 7, pp.639-654. https://doi.org/10.5302/j.icros.2018.18.0049
  10. Department of Defence, 1997, "Flying qualities of piloted aircraft", MIL-HDBK-1797, Department of Defence Handbook.
  11. Department of Defence, 2014, "Airwothiness certification criteria", MIL-HDBK-516C, Department of Defence Handbook.
  12. C. S. Kim, 2019, "Dynamic inversion control of highly maneuverability fighter with center-of-gravity travel for improving flying qualities", Gyeongsang National University Graduate School, School of Mechanical and Aerospace Engineering, Doctor's degree thesis
  13. Jennifer Long, William Koyama, 1999, "F/A-18A/B/C/D 9G flight test program", 1999 IEEE Aerospace Conference.
  14. Xuerui Wang, Erik-Jan van Kampen, and Qiping Chu, 2019, "Stability analysis for incremental nonlinear dynamic inversion control", Journal of Guidance, Control, and Dynamics
  15. Hassan K. Khalil, 2002, "Nonlinear systems 3rd edition", Prentice Hall.
  16. W.F.J.A. Rouwhorst, E.J. van Kampen, T.S.C. Pollack, O. Stroosma, R. De Valois, M.L. Hoogendoorn, W.W.M. Heesbeen, 2019, "4th consultancy report for KAI: Flight envelope expanded control law analysis and design using a high precision F-16 model", NLR-CR-2019-406, NLR-Netherlands Aerospace Centre.
  17. W.F.J.A. Rouwhorst, E.J. van Kampen, T.S.C. Pollack, O. Stroosma, R. De Valois, M.L. Hoogendoorn, W.W.M. Heesbeen, 2020, "5th consultancy report for KAI : Refined control law analysis and design using a high precision F-16 model", NLR-CR-2020-034, NLR-Netherlands Aerospace Centre.