DOI QR코드

DOI QR Code

Papers : The Speed of Sound for Reacting Gases and Effects of the Speed of Sound to Accuracy

논문 : 반응기체 해석을 위한 음속 및 음속에 따른 해의 정확성 연구


Abstract

Accuracy of AUSM-type schemes is closely related to a speed of in a cell-interface. Effect to accuracy by a speed of sound invastigated in the region of subsonic, transonic, and supersonic flows repectively. The advantage of the speed of sound in AUSMPW+ are summerized as the improvement of accuracy in capturing an oblique shock and the removal of an expansion shock to satisfy the entropy condition. They are proven by mathmatics and numerical result. Moreover AUSMPW+ is extended to a real gas flow and the speed of sound for equilibrium and nonequilibrium gas which could give exact soultions in an oblique shock is proposed.

AUSMPW+의 해의 정확성은 음속의 정의와 밀접한 관계가 있다. 아음속, 천음속 그리고 초음속 유동 영역에서 제어면의 음속의 해의 정확성에 어떠한 영향을 미치는지 살펴보았다. AUSMPW+에서 정의된 음속의 특징은 충격파 포착시 정확성 향상과 엔트로피 조건을 만족시키기 위한 팽창충격과 현상을 제거로 요약될 수 있다. 수학적 증명과 수치실험을 통해 이를 확인할 수 있었다. 그리고 반응 기체로 확장하여 평형, 비평형 기체에 대해서도 충격파를 정확하게 포착할 수 있는 음속을 제시하였고 이를 여러 가지 수치 실험을 통해 확인하였다.

Keywords

References

  1. S. Srinivasan, J. C. Tannehill, and K. J. Weilmuenster, "Simplified Curve Fits for the Thermodynamic Properties of Equilibrium Air," NASA RP-1181, Aug. 1987.
  2. R. N. Gupta, K. P. Lee, R. A. Thompson, and J. M. Yos, "Calculations and Curve Fits of Thermodynamic and Transport Properties for Equilibrium Air to 30000 K," NASA RP-1260, 1991.
  3. T. K. S. Murthy, Computational Methods in Hypersonic Aerodynamics, (Kluwer Academics Publishers, Dordrecht, 1991).
  4. C. Park, "Review of Chemical-Kinetic Problems of Future NASA Missions, I:Earth Entries," J. of Thermophysics and Heat Transfer, 7(3), 385-398 (1993). https://doi.org/10.2514/3.431
  5. K. H. Kim, C. Kim, and O. H. Rho, "Methods for the Accurate Computations of Hypersonic Flows, PART I: AUSMPW+ Scheme," accepted to J. of Computational Physics, (2001).
  6. J. L. Steger, and R. F. Warming, "Flux Vector Splitting of the Inviscid Gasdynamic Equations with Application to Finite-Difference Methods," J. of Computational Physics, 40, 263-293 (1981). https://doi.org/10.1016/0021-9991(81)90210-2
  7. B. Van Leer, "Flux-vector Splitting for the Euler Equation," Lecture Notes in physics, 170, 507-512 (1982). https://doi.org/10.1007/3-540-11948-5_66
  8. B. Einfeldt, "On Godunov-Type Method for Gas Dynamics," SIAM J. Numer Anal., 25(2), 294-318 (1988). https://doi.org/10.1137/0725021
  9. M. S. Liou, "A Sequel to AUSM: AUSM+," J. of Computational Physics, 129, 364-382 (1996). https://doi.org/10.1006/jcph.1996.0256
  10. K. H. Kim, and O. H. Rho, "An Improvement of AUSM Schemes by Introducing the Pressure-based Weight Functions," Computers & Fluids, 27(3), 311-346 (1998). https://doi.org/10.1016/S0045-7930(97)00069-8
  11. H. C. Yee, G. H. Kolpfer, and J. L. Montague, "High-Resolution Shock Capturing Schemes for Inviscid and Viscous Hypersonic Flows," NASA TM 101088, 1989.
  12. C. Park, and S Yoon, "Calculation of Real-Gas Effects on Blunt-Body Trim Angles," AIAA J., 30(4), 999-1007 (1992). https://doi.org/10.2514/3.11020
  13. A. Harten, "High Resolution Schemes for Hyperbolic Conservation Laws," J. of Computational Physics, 49, 357-393 (1983). https://doi.org/10.1016/0021-9991(83)90136-5
  14. P. K. Sweby, "High Resolution TVD Schemes Using Flux Limiters," Lectures in Applied Mathematics, 22, 289-309 (1985).
  15. P. L. Roe, "A Survey of Upwind Differencing Techniques," Lecture Notes in Physics, 323, 69 (1989). https://doi.org/10.1007/3-540-51048-6_6
  16. C. Hirsh, Numerical Computation of Internal and External Flows, Vol. 1,2, (John Wiley & Sons, 1990).
  17. K. H. Kim, C. Kim, and O. Rho, "Accurate Computations of Hypersonic Flows Using AUSMPW+ Scheme and Shock-Aligned Grid Technique," AIAA Paper 98-2442, 1998.1